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Sa e All-in-One Transformer: Unifying ASR, AT, and AED
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* Motivation:

— Automatic speech recognition (ASR), audio event detection (AED), and audio tagging (AT) are
traditionally treated as separate problems with custom-made solutions.

— In contrast, the human auditory system uses a single (binaural) pathway to process sound
signals from different sources.

* |nvestigated Questions:
— Can we develop a system that moves closer to the versatility of the human auditory system?

— Can training on multiple heterogeneous tasks lead to a single system with performance similar
to or better than systems developed independently for each task?

— Can a single system successfully handle multiple tasks with widely varying characteristics, large
length discrepancies, and w/ or w/o monotonicity?

© MERL 2



."%"EE%‘%%'.%”' Acoustic Scene

Changes for the Better

1o

d

© MERL




‘ MITSUBISHI
AV N ELECTRIC

Changes for the Better

1o

© MERL

a4

cat meowing

speech

baby crying

traffic sounds

home environment

d

Audio Tagging (AT)

___/




S lEs Acoustic Event Detection (AED)
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S e Automatic Speech Recognition (ASR)
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2l B Baseline System Architectures of DCASE 2019 Task 1, 2, 4, and 5
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Neural

' ‘ EFeatu.re Network Classifier
LrJ e xtraction Model
waveform
Audio sampling rates | Feature Extraction: Neural Network Models | Classifier Methods
Log-Mel Spectral Engergies
16 kHz, 22.05 kHz 40, 64, 96, or 128-dimensional; | CNNs, DNNs, RNNs, ...; Logistic regression;
44.1 kHz, or 48 kHz; Different window and hop sizes; | MobileNet v1; Max and average pooling;
VGGish; Attention-based pooling
Clip- and frame-leve classification;

- A.Mesaros, T. Heittola, and T. Virtanen, “A multi-device dataset for urban acoustic scene classification,” in Proc. of the DCASE Workshop, 2018.

- E.Fonseca, M. Plakal, F. Font, D. Ellis, and X. Serra, “Audio tagging with noisy labels and minimal supervision,” in Proc. of the DCASE Workshop, 2019.

- L. JiaKai, “Mean teacher convolution system for DCASE 2018 task 4,” in Proc. of the DCASE Workshop, 2018.

- J. Bello, C. Silva, O. Nov, R. Dubois, A. Arora, J. Salamon, C. Mydlarz, and H. Doraiswamy, “SONYC: a system for monitoring, analyzing, and mitigating urban noise pollution,” Communications of the ACM, 2019.

- S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. Wilson, “CNN architectures for large-scale audio classification,” in
Proc. IEEE ICASSP, 2017.

Detection and Classification of Acoustic Scenes and Events (DCASE)
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e M System Architecture: Attention-Based Encoder-Decoder
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e SR System Architecture: Hybrid CTC-Transformer
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e Automatic Speech Recognition (ASR)

— Wall Street Journal (WSJ): “Read English newspapers”.
Train: 81h; Dev.: 1.1h; Test: 0.7h

e Acoustic Event Detection (AED)

— DCASE 2019 task 4 (DCASE19-4): “Sound event detection in domestic environments”.
Train: 5.7h; Dev.: 2.9h; Test: 1.9h
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S usEsi Data Sets
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e Audio Tagging (AT):

— DCASE 2017 task 4 (DCASE17-4): “Large-scale weakly supervised sound event detection for
smart cars”.
Train: 140h; Dev.: 1.3h; Test: 3h

— DCASE 2018 task 3 (DCASE18-3): “Bird audio detection”.
Train: 99h; Dev.: n/a; Test: n/a

— DCASE 2019 task 1 (DCASE19-1): “Audio scene classification”.
Train: 25.5h; Dev.: 11.6h; Test: 9.8h

— DCASE 2019 task 2 (DCASE19-2): “Audio tagging with noisy labels and minimal supervision”.
Train: 90.8; Dev.: 3.1h; Test: 9.8h

— DCASE 2019 task 4 (DCASE19-4): “Sound event detection in domestic environments”.
Train: 9.8h; Dev.: 2.9h; Test: 1.9h

— DCASE 2019 task 5 (DCASE19-5): “Urban sound tagging”.
Train: 4.4h; Dev.: 1.2h; Test: 0.7h

— The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): Recognition of
“emotion” + “vocal channel” + “gender”
Train: 2.8h; Dev.: n/a; Test: n/a
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<asr>hello<space>world</s>

<aed> catg cat, speech catg speech. speech; </s>
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Satses Audio Tagging — Results
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Micro-averaged F1-scores [%]

DCASE19 DCASE18 DCASE17 RAVDESS
Training data Task1l  Task 2 Task 4 Task 5 Task 3 Task 4
System AT AED ASR | dev dev test dev test dev test| dev test | dev test | dev test

Baseline Systems | single X X | 625 398 388 714 66.8 73.0 689| nfa n/a |19.0 29.3| nfa n/a
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Word Error Rates [%]

Training data
AED

System
CTC-Transformer
CTC-Transformer

AlO Transformer

Multi-condition training using DEMAND and NOISEX data sets.

Noisy test conditions using the DCASE data sets.
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* Multi-condition training
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Fl-scores [%]

System AT
Baseline system X
CTC-Transformer X

Event-based F1-scores: 200 ms collar for on- and offsets
Segement-based Fl-scores: 1 sec. long segments
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Training data
AED
v
v

ASR

X
X

Event-based Segment-based
dev test dev test
29.0 24.0 58.5 54.8
16.0 10.6 43.8 34.8

* Multi-condition training
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Lo v Conclusions
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e ASR, AED, and AT tasks can be unified under a single system architecture, where model
parameters are shared across all tasks.

* Multi-task learning has shown to improve results for individual tasks.

* The AIO Transformer model has achieve competitive or better results compared to all
tested DCASE challenge baseline systems, as well as to an ASR baseline system of similar

architecture.

* The proposed system can be used to perform the total transcription of an acoustic scene,
i.e., a single system can be used to transcribe speech as well as other acoustic events.
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