

FR1.R6.4: Classical Meets Quantum

Channel Decoding with Quantum Approximate Optimization Algorithm

Toshiki Matsumine Toshiaki Koike-Akino <u>Ye Wang</u>

July 12, 2019

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL) Cambridge, Massachusetts, USA <u>http://www.merl.com</u>

© MERL

- Background of quantum technology trend
- Variational quantum algorithms
- Quantum Approximate Optimization Algorithm (QAOA)
- QAOA hybrid quantum-classical channel decoding
- Simulation and real quantum processor results
- New theory
- Degree optimization for QAOA-friendly channel codes
- Summary

- Morgan Stanley: Quantum tech can drive 4th industrial revolution
- Escalating government funds: National Quantum Initiative \$1.2B
- Quantum providers: IBM, Google, Microsoft, Honeywell, Intel, Nokia, AirBus, IONQ, rigetti

Free Python libraries to try quantum computing on realistic simulators or real devices

MITSUBISHI Changes for the Better Changes for the Better

• Quantum processing units (QPU) are already in front of us

MITSUBISHI Changes for the Better **Post-2014 Trend: Variational Quantum Principle**

- Hybrid use of quantum measurement and classical optimization
 - VQE: Variational Quantum Eigensolver (2014)
 - QAOA: Quantum Approximate Optimization Algorithm (2014)

	PHYSICAL REVIEW X Highlights Recent Subjects Accepted Collections Authors Referees
Article OPEN Published: 23 July 2014 A variational eigenvalue solver on a photonic quantum processor Alberto Peruzzo , Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik & Jeremy L. O'Brien Nature Communications 5, Article number: 4213 (2014) Download Citation ±	Image: State Constant State S
arXiv.org > quant-ph > arXiv:1411.4028	SC SC SC SC SC SC SC SC SC SC
Quantum Physics	CaseJP Conselled Hermond Control Mass, Jacobian Binderen, Jarod M. Chara, Tourne Marc, Hwy Saen, Pater Jacobian March J. Jacobian Binderen, Jarod M. Chara, Tourne Marc, Hwy Saen, Pater Jacobian March J. Jacobian March J. Jacobian Binderen, Jacobian Binderen, Jacobian Binderen, Jacobian March J. J
A Quantum Approximate Optimiza	ation Algorithm
Edward Farhi, Jeffrey Goldstone, Sam Gutmann (Submitted on 14 Nov 2014)	J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E. Schuyler Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Papageorge, E. C. Peterson, G. Frawincamodio, N. Molin, Colm A. Ryan, D. Scaraelbill, M. Schere, F. A. Stete, P. Sivarajah, Robert S. Smith, A. Staley, N. Tezak, W. J. Zeng, A. Hudson, Blake R. Johnson, M. Reagor, M. P. da Silva, C. Rigetti Submitted <i>int 3 Dec 2017</i>
(Submitted on 14 Nov 2014)	Narger, N. F. & Shar, C. Rapelli Science on 31 Dec 2017

Example: Variational Quantum Factoring (VQF)

- Quantum factoring by Shor's algorithm (1994) showed superpolynomial speed-up, ... but requires noise-free quantum gates
- VQF (2018) can reduce required qubits by 4 orders of magnitude, by removing necessity of error corrections

Variational Quantum Algorithms for NISQ

 Current quantum processors are noisy and limited-coherent: quantum gates cannot be perfect
 Real
 Ideal

 For noisy intermediate-scale quantum (NISQ) devices, variational hybrid quantum-classical algorithms may be a viable driver for quantum supremacy due to shallow gates and noise resilience

QAOA: Quantum Approximate Optimization Alg.

- Alternating cost Hamiltonian and mixer Hamiltonian like annealing
- Convergence theorem to eigenstate for infinite-level QAOA
 - Infinite Suzuki-Trotter decomposition with adiabatic annealing
- Classical optimization of variational angle parameters given quantum measurement $\lim_{p\to\infty} F_p^{\star} = \max_{\mathbf{z}} C(\mathbf{z})$
- Theoretical analysis showed better accuracy than classical counterparts; e.g. MaxCut, MaxSat, MaxClique

© MERL 7/12/19

Example: QAOA for MaxCut Problem

• Construct Hamiltonian to maximize the cut

- Theorem (2018): For level-1 QAOA, approximation performance depends on graph edge degrees:
 - For each edge (uv),

$$\langle \gamma \beta | C_{uv} | \gamma \beta \rangle = \frac{1}{2} + \frac{1}{4} \sin(4\beta) \sin\gamma \left(\cos^d \gamma + \cos^e \gamma \right)$$
$$- \frac{1}{4} \sin^2 \beta \cos^{d+e-2f} \gamma \left(1 - \cos^f 2\gamma \right)$$

where d = deg(u) - 1, e = deg(v) - 1, and f is the number of triangles in the graph containing (uv).

$$\max_{\gamma,\beta} \langle C \rangle \geq \frac{m}{2} + \frac{m}{2\sqrt{e}} \frac{1}{\sqrt{D_G}} - O\left(\frac{F}{D_G}\right)$$

Expected solution outperformed best-known classical algorithms, Goemans-Williamson (1995)

d f 95) Triangle = Girth-6 in factor graph

Application to Channel Decoding Problem MITSUBISHI Chanaes for the Better

- This talk is not "Quantum Error Correction Codes (QECC)" to correct quantum errors in quantum channels/systems
- We want to correct classical errors with classical error correction codes (ECC) in classical channels through the use of CPU and QPU

- Hamming codes, Reed-Muller codes, Golay codes, convolutional codes, turbo codes, low-density parity-check (LDPC) codes, polar codes, ...
- Suppose linear binary codes with generator matrix

$$\mathbf{G} \in \mathbb{F}_2^{k imes n}$$

 Redundancy: Parity

 [01011100101011] → [01011100101011 00100101110111011]

$$\mathbf{u}\in\mathbb{F}_2^k$$

$$\mathbf{x} = \mathbf{u}\mathbf{G}$$

 $\mathbf{x} \in \mathbb{F}_2^n$

Communication channel exhibits noise

$$\mathbf{y} = \mathbf{x} + \mathbf{w} \qquad \mathbf{w} \in \mathbb{R}^n$$

• Maximum-likelihood (ML) decoding for symmetric channels:

$$\arg\min_{\mathbf{u}} d_{\mathrm{H}}(\mathbf{y}|\mathbf{x}) = \arg\max_{\mathbf{u}} \sum_{\nu=1}^{n} (1 - 2y_{\nu})(1 - 2x_{\nu})$$

NP-hard 2^k search for maximum correlation

- Suppose we have ultra-smart phone, equipped with CPU, GPU/TPU, and QPU
- We use VQE/QAOA to realize quasi-ML decoding for reliable telecommunications

Convert ML decoding problem into Ising Hamiltonian model

$$\arg\min_{\mathbf{u}} d_{\mathbf{H}}(\mathbf{y}|\mathbf{x}) = \arg\max_{\mathbf{u}} \sum_{\nu=1}^{n} (1 - 2y_{\nu})(1 - 2x_{\nu})$$

$$\mathbf{x} = \mathbf{u}\mathbf{G}$$

$$k \text{-bit search: } 2^{k}$$

$$k \text{-qubit parallel operation}$$

$$C = \sum_{\nu=1}^{n} C_{\nu} = \sum_{\nu=1}^{n} (1 - 2y_{\nu}) \prod_{\kappa \in \mathcal{I}_{\nu}^{c}} \mathbf{Z}_{\kappa}$$
Pauli-Z
$$\int_{\kappa \in \mathcal{I}_{\nu}^{c}} \mathbf{z}_{1} \mathbf{z}_{2} = \operatorname{XOR} \int_{\kappa \in \mathcal{I}_{\nu}^{c}} \mathbf{z}_{1} \mathbf{z}_$$

 $|1\rangle$

Example: Hamming Code Hamiltonian

- [7, 4] Hamming code is best-known code for n=7 and k=4, having minimum Hamming distance of 3, which can correct 1 bit error
- Generator matrix:

c.f.) MaxCut Hamiltonian is regular degree-2

- We consider Hadamard superposition state
 - 50% chance of 0 or 1 measurement, thus random search

- We use admixing Hamiltonian for annealing
 - Why? Its eigenstate is Hadamard state

$$B = \sum_{\kappa=1}^{k} \mathbf{X}_{\kappa}$$
 Pauli-X

Eigenstate:

$$|\phi\rangle = |+\rangle^{\otimes k}$$

© MERL 7/12/19

- CPU:
 - Given generator matrix G and received signal y
 - Construct cost Hamiltonian with variational angles
 - Quantum shots on QPU to obtain quasi-ML decision
 - Re-optimize angles if necessary and re-shot

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{array}{c} C = r_1 \mathbf{Z}_1 + r_2 \mathbf{Z}_2 + r_3 \mathbf{Z}_3 + r_4 \mathbf{Z}_4 \\ + r_5 \mathbf{Z}_1 \mathbf{Z}_2 \mathbf{Z}_4 + r_6 \mathbf{Z}_1 \mathbf{Z}_3 \mathbf{Z}_4 + r_7 \mathbf{Z}_2 \mathbf{Z}_3 \mathbf{Z}_4 \end{bmatrix}$$

- QPU: QAOA
 - Initialize quantum state: |+> with Hadamard gates
 - Apply gamma angle rotation with cost Hamiltonian C
 - Apply beta angle rotation with mixer Hamiltonian **B**
 - Repeat *p*-times for level-*p* QAOA

© MERL

Quantum Circuits for QAOA Decoding

- State preparation: Hadamard H
- Mixer Hamiltonian operation: $\exp(\jmath eta \mathbf{B})$
- Cost Hamiltonian operation: $\exp(j\gamma \mathbf{C})$

Degree-d XOR: 2(d-1) CNOT

Hamming code QAOA decoder

хр

Quantum Simulation: Binary Symmetric Channel

- Rigetti pyquil is used for VQE with Nelder-Mead to optimize variational angles
- IBM qiskit is used for QAOA decoding simulation for validation

 ML decision success probability can be improved by taking multiple measurements of QPU shots

MITSUBISHI ELECTRIC S for the Better Theoretical Analysis of QAOA Decoding

• Given code generator matrix, derive cost expectation

$$F_p(\boldsymbol{\gamma},\boldsymbol{\beta}) = \langle C \rangle(\boldsymbol{\gamma},\boldsymbol{\beta}) = \langle \boldsymbol{\gamma},\boldsymbol{\beta} | C | \boldsymbol{\gamma},\boldsymbol{\beta} \rangle$$

• For QAOA ansatz states with variational angles beta and gamma $|\gamma, \beta\rangle = U(B, \beta_p)U(C, \gamma_p) \cdots U(B, \beta_1)U(C, \gamma_1)|\phi\rangle$

$$U(B,\beta) = \exp(-\jmath\beta B)$$
 $U(C,\gamma) = \exp(-\jmath\gamma C)$

Cost Hamiltonian

$$=\sum_{\nu=1}^{n} C_{\nu} = \sum_{\nu=1}^{n} (1-2y_{\nu}) \prod_{\kappa \in \mathcal{I}_{\nu}^{c}} \mathbf{Z}_{\kappa}$$

- Mixer Hamiltonian $B = \sum_{\kappa=1}^{k} \mathbf{X}_{\kappa}$
- Focus on each clause of cost Hamiltonian

$$F_p(\boldsymbol{\gamma},\boldsymbol{\beta}) = \sum_{\nu} \langle C_{\nu} \rangle$$

• For QAOA-1 decoding, cost expectation is expressed as follows:

$$F_{1}(\gamma_{1},\beta_{1}) = \sum_{\nu=1}^{n} (1-2y_{\nu}) \sum_{\mathbf{b}\in\mathbb{F}_{2}^{k}}$$
$$\sum_{\mathbf{a}\in\mathbb{F}_{2}^{\rho}:\mathbf{b}=\mathbf{G}^{\mathbf{b}}\mathbf{a}} A_{\nu}^{\mathbf{a},\mathbf{b}}(\jmath s)^{\omega} c^{(\rho-\omega)} (-\jmath s')^{\varpi} c'^{(d_{\nu}^{\mathbf{c}}-\varpi)}$$

$$c' = \cos(2\beta_1)$$
 and $s' = \sin(2\beta_1)$

$$c = \cos(2(-1)^{y}\gamma_{1})$$
 and $s = \sin(2(-1)^{y}\gamma_{1})$

where rho is rank, omega is weight of vector **a**, pi is weight of vector **b**, $\mathbf{G}^{\mathbf{b}}$ is sub-generator matrix associated with **b**, and A is the number of conditional pairs subject to $\mathbf{b}=\mathbf{G}^{\mathbf{b}}\mathbf{a}$

• This theorem holds for any arbitrary linear binary codes

Mixer Hamiltonian (RX) on Cost Function MITSUBISHI Chanaes for the Better • Focus each clause in cost expectation $F_p(\boldsymbol{\gamma},\boldsymbol{\beta}) = \sum_{\nu} \langle C_{\nu} \rangle$ $\langle C_{\nu} \rangle = \langle \phi | U^{\dagger}(C, \gamma_1) U^{\dagger}(B, \beta_1) C_{\nu} U(B, \beta_1) U(C, \gamma_1) | \phi \rangle$ $U(B,\beta_1)^{\dagger} (\prod \mathbf{Z}_{\kappa}) U(B,\beta_1) = \prod (c' \mathbf{Z}_{\kappa} + s' \mathbf{Y}_{\kappa})$ $\prod \exp(-\jmath \beta_1 \mathbf{X}_i)$ Cost Z **Recall Pauli rules:** $\exp(j\beta \mathbf{W}) = \cos(\beta)\mathbf{I} + j\sin(\beta)\mathbf{W}$ v WW = I0 $\mathbf{X}\mathbf{Y} = \mathbf{j}\mathbf{Z}$ $\mathbf{YZ} = \jmath \mathbf{X}$ $\mathbf{Z}\mathbf{X} = \mathbf{y}\mathbf{Y}$

Mixer X-rotations

b=[0 0 0 ... 0]

- *d*-ary Product of binary Pauli sum: $U(B,\beta_1)^{\dagger} (\begin{bmatrix} \mathbf{Z}_{\kappa} \end{bmatrix} U(B,\beta_1) = \begin{bmatrix} (c'\mathbf{Z}_{\kappa} + s'\mathbf{Y}_{\kappa}) \end{bmatrix}$
- Expand to 2^d-ary sum of d-ary Pauli product:

 $c'^{d}\mathbf{Z}_{1}\mathbf{Z}_{2}\cdots\mathbf{Z}_{d}+c'^{d-1}s'\mathbf{Z}_{1}\mathbf{Z}_{2}\cdots\mathbf{Y}_{d}+\cdots s'^{d}\mathbf{Y}_{1}\mathbf{Y}_{2}\cdots c'\mathbf{Y}_{d}$

• Let $\mathbf{b} = \{0,1\}^{\delta}$ indicate expansion term entangled either $c' \mathbf{Z}$ or $s' \mathbf{Y}$ b=[0 0 0 ... 1]

Cost expectation will be proportional to

$$(-\jmath s')^{\varpi} c'^{(d_{\nu}^{c}-\varpi)}$$
 due to $\mathbf{Z}\mathbf{Y} = -\jmath \mathbf{X}$ and $\langle +|\mathbf{X}|+\rangle = 1$
 $\varpi = |\mathbf{b}|_{0}$

Admixing |+> measurement

Cost Hamiltonian (RZ) on Expanded Pauli Product

- Let $\mathbf{W}^{\mathbf{b}} = c'^{d-\varpi}s'^{\varpi}\mathbf{Z}_i...\mathbf{Y}_j$ be expanded Pauli product associated with binary indicator **b**
- Conjugate with cost Hamiltonian can be expressed by noncommutable Hamiltonian C^b of rank rho

$$U(C,\gamma_1)^{\dagger} \mathbf{W}^{\mathbf{b}} U(C,\gamma_1) = U(C^{\mathbf{b}}, 2\gamma_1)^{\dagger} \mathbf{W}^{\mathbf{b}}$$

 Non-commutable sub-generator matrix G^b is column-selective G whose weight is odd after Hadamard product

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{(1 - 2y_5) \mathbf{Z}_1 \mathbf{Z}_2 \mathbf{Z}_4} \mathbf{B} = \begin{bmatrix} 1, 1, 0, 1 \end{bmatrix} \mathbf{W}^{\mathbf{b}} = s'^3 \mathbf{Y}_1 \mathbf{Y}_2 \mathbf{Y}_4 \mathbf{B} \mathbf{G} = \begin{bmatrix} 1, 1 & 0, 1, 1 & 0, 0 \end{bmatrix} \mathbf{G}^{\mathbf{b}} = \begin{bmatrix} 1, 1 & 0, 1, 1 & 0, 0 \end{bmatrix} \mathbf{G}^{\mathbf{b}} = \begin{bmatrix} \mathbf{G} \end{bmatrix}_{:,\{1,2,4,5\}}$$

MITSUBISHI ELECTRIC Is for the Better Binomial Expansion of Cost Hamiltonian

• Cost Hamiltonian conjugate on cost function:

$$U(C,\gamma_1)^{\dagger} \mathbf{W}^{\mathbf{b}} U(C,\gamma_1) = U(C^{\mathbf{b}}, 2\gamma_1)^{\dagger} \mathbf{W}^{\mathbf{b}}$$

• The non-commutable cost Hamiltonian operator is expressed

$$U(C^{\mathbf{b}}, 2\gamma_1)^{\dagger} = \prod_{\nu}^{\rho} e^{2j\gamma_1 C_{\nu}} = \prod_{\nu}^{\rho} \left(c\mathbf{I} + js \prod_{\kappa} \mathbf{Z}_{\kappa} \right)$$

- Again, take binomial expansion from rho-ary product to 2^{rho}-ary sum
- Let a={0,1}ⁿ indicate binary selection of eather cl or js Z₁ Z₂...

$$\begin{split} \mathbf{G}^{\mathbf{b}} &= [\mathbf{G}]_{:,\{1,2,4,5\}} \quad \mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \\ \mathbf{a} &= \begin{bmatrix} 0, 0, 1, 1 \end{bmatrix} & \text{Non-compute?} \\ \text{How many pair?} \\ \mathbf{b} &= \mathbf{G}^{\mathbf{b}} \mathbf{a} \end{split}$$

 $(c\mathbf{I})(c\mathbf{I})(\jmath s\mathbf{Z}_1\mathbf{Z}_2\mathbf{Z}_4)(\jmath s\mathbf{Z}_1\mathbf{Z}_3\mathbf{Z}_4) = -s^2c^2\mathbf{Z}_2\mathbf{Z}_3$

MITSUBISHI Changes for the Better Non-Commute Pair Enumerator

• Number of non-commutable pairs

$$U(C, \gamma_{1})^{\dagger} \mathbf{W}^{\mathbf{b}} U(C, \gamma_{1}) = U(C^{\mathbf{b}}, 2\gamma_{1})^{\dagger} \mathbf{W}^{\mathbf{b}}$$

$$2^{d} \text{ Pauli-product terms: } \mathbf{b} = [0,0,..0] \text{ to } [1,1,...,1]$$

$$U(C^{\mathbf{b}}, 2\gamma_{1})^{\dagger} = \prod_{\nu}^{\rho} e^{2j\gamma_{1}C_{\nu}} = \prod_{\nu=1}^{\rho} (c\mathbf{I} + js \prod \mathbf{Z}_{\kappa})$$

$$2^{rho} \text{ Pauli-product terms: } \mathbf{a} = [0,0,..0] \text{ to } [1,1,...,1]$$

$$\mathbf{b} = \mathbf{G}^{\mathbf{b}} \mathbf{a}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 1 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \end{bmatrix} \mathbf{G}^{\mathbf{b}} = [\mathbf{G}]_{:,\{1,2,4,5\}} \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 0 & 1 & \cdots & 1 \end{bmatrix}$$

$$\mathbf{Same?}$$

$$\mathbf{b} = [1, 1, 0, 1]$$

$$\mathbf{Counting the number of pairs: } \mathbf{A}$$

$$F_{1}(\gamma_{1}, \beta_{1}) = \sum_{\nu=1}^{n} (1 - 2y_{\nu}) \sum_{\mathbf{b} \in \mathbb{F}_{2}^{b}} \sum_{\alpha \in \mathbb{F}_{2}^{b} : \mathbf{b} = \mathbf{G}^{\mathbf{b}} \mathbf{a}$$

0

0

0

()

MITSUBISHI Changes for the Better Changes for the Better

 Corollary: QAOA-1 decoder of [16, 5] Reed-Muller codes has quantum eigenvalue:

> $F_1(\gamma_1, \beta_1) = \frac{1}{32} \sin(4\gamma_1) \sin(2\beta_1)$ $(4(\cos(4\gamma_1) + \cos(12\gamma_1) + \cos(20\gamma_1) + \cos(24\gamma_1)) \sin^4(2\beta_1)$ $+ 5(\cos(4\gamma_1) + \cos(12\gamma_1))(25 + 36\cos(4\beta_1) + 3\cos(8\beta_1))).$

MITSUBISHI Changes for the Better Numerical Validation: Hamming Code

• Corrolay: QAOA-1 decoder of [7, 4] Hamming codes has quantum eigenvalue:

$$-2sc(c^2 - s^2)s'(1 - 3c'^2) + 3sc^2s'(1 + 2c'^2)$$

 Given analytical expression of eigenvalues, we can obtain optimal variational angles without need of VQE

Reed-Muller Code

Hamming Code

How To Optimize Codes for Quantum Decoder?

• It is known that degree distribution can be optimized by extrinsic information transfer (EXIT) or density evolution (DE) for LDPC codes when belief-propagation (BP) decoding is employed

- Any linear codes have exactly identical ML performance over arbitrary full-rank basis transform
 - Hamming distance spectrum is invariant
- Hamming code has average degree of 1.86, but it can be decreased to 1.71 and increased up to 2.71 via basis transform
- QAOA performance depends on degree distribution
 - Lower vs. higher degrees?

Transformed Hamming Codes: QAOA-1 Eigen

 \mathbf{P} $F_1(\gamma_1, \beta_1)$ β_1^{\star} d° γ_1^{\star} $1 \ 0 \ 0 \ 0$ $3sc^{2}s'(1+c')^{2} - sc^{2}s'^{3}(c^{2}-3s^{2})(c^{2}-s^{2})$ 0100 1.712.409 .424 0.311 0010 $-2sc(c^{2}-s^{2})s'(1-3c'^{2})+3sc^{2}s'(1+2c'^{2})$ 1.86 0 1 0 01.790 0.345 0.277 0010 $sc^{2}s'(1+c'+c'^{2}+3c'^{3})+2sc(c^{2}-s^{2})s'(1+c'^{2}+2c'^{3})-sc^{2}(c^{2}-3s^{2})(c^{2}-s^{2})s'^{3}(1+c')$ $1 \ 1 \ 0 \ 0$ 2.001.606 0.329 0.239 0010 $3sc^{2}s'(c'^{2}-s'^{2})+2sc(c^{2}-s^{2})s'(1+5c'^{2})$ 0100 2.14 1.562 0.785 1.820 0110 $-3sc^{2}s'(1-c'-3c'^{2}) + sc^{2}(c^{2}-3s^{2})(c^{2}-s^{2})s'(1+3c'+3c'^{2})$ 0100 1.367 .310 0.512 2.290010 $sc^{2}s'c'(1+2c'+3c'^{2}) - 2sc(c^{2}-s^{2})s'(1+c'-2c'^{2}-2c'^{3}) + sc^{2}(c^{2}-3s^{2})(c^{2}-s^{2})s'(1+3c'+2c'^{2}+c'^{3})$ 0100 1.308 0.283 1.034 2.43 0010 $-sc^{2}s'(1+2c'-3c'^{2}-3c'^{3})-2sc(c^{2}-s^{2})s'(1-3c'^{2}-2c'^{3})+sc^{2}(c^{2}-3s^{2})(c^{2}-s^{2})s'(1+2c'+3c'^{2}+c'^{3})\Big|1.420\Big|0.275\Big|1.005\Big|1.0$ ${\begin{smallmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ \end{smallmatrix}}$ 2.57 $0\ 1\ 1\ 1$ $-3sc^{2}s'^{3}(1+c') + 2sc(c^{2}-s^{2})s'c'(1+2c')(1+c') + sc^{2}(c^{2}-3s^{2})(c^{2}-s^{2})(3+3c'+c'^{2})s'c'$ 1.671 0.506 1.846 2.71 $1 \ 0 \ 1 \ 0$ 1.5 2.5 2.5 0.5 λalgle γ λ algle γ λ algle γ 0 0 -0.5 -0.5 -1.5 0.5 0.5 -1.5 -2 -2.5 0 2.5 2.5 0.5 1.5 0.5 1.5 2 0.5 1.5 2.5 Angle β Angle β Angle ß 2.5 2.5 2.5 0.5 λ algle γ λ algle γ λalgna 1.5 0 -0.5 -0.5 1 -0.5 0.5 0.5 1.5 2 2.5 3 0.5 1.5 2.5 3 0.5 1.5 2.5 3 Angle ß Angle ß Angle β

• VQE with Nelder-Mead, Cross-entropy loss

- We introduced variational hybrid quantum-classical algorithms
- We applied QAOA to classical channel decoding problem
- We demonstrated the near-ML performance with QAOA decoding
- We evaluated performance on real quantum processor at IBM
- We developed theoretical framework to analyze QAOA decoding
- We optimized degree distribution of coding generator matrix focusing on Hamming codes ensemble
 - We observed that empirically LDGM works well for QAOA-1 decoding

VQE: Variational Quantum Eigensolver

• Time evolution of quantum states: Schrodinger equation

$$H \ket{\psi(t)} = i \hbar rac{\partial}{\partial t} \ket{\psi(t)}$$

• We obtain steady-eigenstates:

$$\ket{\psi(t)} = e^{-iHt/\hbar} \ket{\psi(0)}$$

$$H\ket{a}=E_{a}\ket{a}$$

classical

MITSUBISHI

Chanaes for the Better

- Single qubit over C² on sphere can be transformed by unitary operators (Stiefel Manifold), which has 4 degrees of freedom
- Complex 2x2 unitary operation is homomorphic to skew-Hermitian, decomposable by Pauli matrices

$$\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \mathbf{Y} = \begin{bmatrix} 0 & -j \\ j & 0 \end{bmatrix}, \text{ and } \mathbf{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\mathbf{U} = \exp(j(\beta_0 \mathbf{I} + \beta_1 \mathbf{X} + \beta_2 \mathbf{Y} + \beta_3 \mathbf{Z})) \quad (\mathbf{A})$$

- Exponential rule $\exp(\jmath\beta \mathbf{W}) = \cos(\beta)\mathbf{I} + \jmath\sin(\beta)\mathbf{W}$
- Rotation rule WW = I $XY = \jmath Z$ $YZ = \jmath X$ $ZX = \jmath Y$

v

- Mixer Hamiltonian operator is based on X-rotation (RX gates)
- Cost Hamiltonian operator is based on Z-rotation (RZ gates) $U(B,\beta) = \exp(-\jmath\beta B) \qquad \qquad U(C,\gamma) = \exp(-\jmath\gamma C)$ $B = \sum_{\kappa=1}^{k} \mathbf{X}_{\kappa} \qquad \qquad C = \sum_{\nu=1}^{n} C_{\nu} = \sum_{\nu=1}^{n} (1-2y_{\nu}) \prod_{\kappa \in \mathcal{T}^{c}} \mathbf{Z}_{\kappa}$
- Quantum eigenvalue is conjugate product for cost function

$$F_{p}(\gamma,\beta) = \langle C \rangle(\gamma,\beta) = \langle \gamma,\beta | C | \gamma,\beta \rangle$$

$$|\gamma,\beta\rangle = U(B,\beta_{p})U(C,\gamma_{p})\cdots U(B,\beta_{1})U(C,\gamma_{1})|\phi\rangle$$
Commute or non-commute? $\exp(\jmath\beta \mathbf{W}) = \cos(\beta)\mathbf{I} + \jmath\sin(\beta)\mathbf{W}$

$$\exp(-\jmath\beta \mathbf{Z})\mathbf{Z}\exp(\jmath\beta \mathbf{Z}) = \mathbf{Z}$$
Commute: No operation $[\mathbf{Z},\mathbf{Z}] = 0$

$$\exp(-\jmath\beta \mathbf{Z})\mathbf{Y}\exp(\jmath\beta \mathbf{Z}) = c\mathbf{Z} - s\mathbf{X}$$
Non-Commute: Rotation
$$[\mathbf{Z},\mathbf{Y}] = -2\jmath\mathbf{X}$$

$$\exp(-\jmath\beta \mathbf{Z}_{1}\mathbf{Z}_{2})\mathbf{Y}_{1}\mathbf{Y}_{2}\exp(\jmath\beta \mathbf{Z}_{1}\mathbf{Z}_{2}) = \mathbf{Y}_{1}\mathbf{Y}_{2}$$

$$[\mathbf{Z}_{1}\mathbf{Z}_{2},\mathbf{Y}_{1}\mathbf{Y}_{2}] = 0$$
Commute: No operation

• Generator matrix

- 10th Cost (degree d=3): $\sum_{\substack{\exp(j\beta \mathbf{X})\\\mathbf{Z}_{1}\mathbf{Z}_{2}\mathbf{Z}_{5} \longrightarrow (c'\mathbf{Z}_{1} + s'\mathbf{Y}_{1})(c'\mathbf{Z}_{2} + s'\mathbf{Y}_{2})(c'\mathbf{Z}_{5} + s'\mathbf{Y}_{5})$
- Expansion: $2^d = 8$ terms with indicator **b** b=[000] $c'^3 \mathbf{Z}_1 \mathbf{Z}_2 \mathbf{Z}_3 + c'^2 s' \mathbf{Z}_1 \mathbf{Z}_2 \mathbf{Y}_3 + c'^2 s' \mathbf{Z}_1 \mathbf{Y}_2 \mathbf{Z}_3 + c' s'^2 \mathbf{Z}_1 \mathbf{Y}_2 \mathbf{Y}_3 + c' s'^2 \mathbf{Y}_1 \mathbf{Z}_2 \mathbf{Z}_3 + c' s'^2 \mathbf{Y}_1 \mathbf{Z}_2 \mathbf{Z}_3 + c' s'^2 \mathbf{Y}_1 \mathbf{Z}_2 \mathbf{Y}_3 + c' s'^2 \mathbf{Y}_1 \mathbf{Y}_2 \mathbf{Z}_3 + s'^3 \mathbf{Y}_1 \mathbf{Y}_2 \mathbf{Y}_3$
- Non-commute cost Hamiltonian of rank rho: G^b

b=[111]

$\mathbf{b}\mathbf{G}$

 $(-\eta s')^{\varpi} c'^{(d_{\nu}^{c}-\varpi)}$

Expansion of cost Hamiltonian: 2^{rho} terms with indicator a

$$U(C^{\mathbf{b}}, 2\gamma_1)^{\dagger} = \prod_{\nu}^{\rho} e^{2j\gamma_1 C_{\nu}} = \prod_{\nu}^{\rho} \left(c\mathbf{I} + js \prod_{\kappa} \mathbf{Z}_{\kappa} \right)$$

$$(\jmath s)^{\omega}c^{(\rho-\omega)}$$

Example: Reed-Muller Code (Pair Counts)

- Generator matrix
- Count non-commute pairs over **a** and **b** such that

$$\mathbf{b} = \mathbf{G}^{\mathbf{b}}\mathbf{a} \quad \longrightarrow \quad A^{\mathbf{a},\mathbf{b}}_{\nu}(\jmath s)^{\omega}c^{(\rho-\omega)}(-\jmath s')^{\varpi}c'^{(d^{\mathbf{c}}_{\nu}-\varpi)}$$

• Enumerator results of RM codes:

0 715 0 715 0 273 35 0] w 5 d 5 h 16 35 0 273 0 0 1 x 5 01 07 07 0 1 w 1 h 8 x 30 1 h 8 01 1 x 5 1 [0] 0 a 01 1 h 8 x 10 A [0 1 0 7 07 0 1 01 w 3 d 3 h 8 x 10 A [0 1 0 7 0 7 0 1 0] w 3 d 5 h 8

MITSUBISHI Changes for the Better Changes for the Better

• VQE optimizes variational parameters based on Hamiltonian-energy relation:

$$H\ket{a}=E_{a}\ket{a}$$

• For QAOA, we typically optimizer parameters to maximize **mean cost function**:

$$F_p(\boldsymbol{\gamma},\boldsymbol{\beta}) = \langle C \rangle(\boldsymbol{\gamma},\boldsymbol{\beta}) = \langle \boldsymbol{\gamma},\boldsymbol{\beta} | C | \boldsymbol{\gamma},\boldsymbol{\beta} \rangle$$

- It corresponds to minimizing average bit-error rate (BER)
- However, it does not minimize word-error rate (WER)
- We proposed to use cross entropy to minimize WER

Side Note: Coupling Map for Real QPU MITSUBISHI Chanaes for the Better

- We should be careful of the real quantum gate depths depending on QPU coupling maps
- CNOT bridging and SWAP should be reduced

(a) IBM QX2

(b) IBM QX4

 $Q_0 \leftarrow q_0 \quad \not \sim \quad q_1$ $Q_0 \leftarrow q_0$ $Q_1 \leftarrow q_1$ $Q_0 \leftarrow q_0$ – q_1 $Q_1 \leftarrow q_1$

SWAP

(c) IBM QX3

(d) IBM OX5

 q_0

 q_1

 q_2

 q_3

 q_4

 q_5

 q_1

 q_0

 q_0

• Classical bit: {0,1} \rightarrow Quantum bit: superposition of |0> and |1> $|\phi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$ $|\alpha_0|^2 + |\alpha_1|^2 = 1$

http://stla.github.io/stlapblog/posts/BlochSphere.html

THE BLOCH SPHERE A stereographic representation of qubits

The simplest quantum state, namely the (pure) qubit, can be written

$$|\psi\rangle = \cos{\frac{\theta}{2}}|0
angle + e^{i\varphi}\sin{\frac{\theta}{2}}|1
angle$$

and shown on the Bloch sphere as the vector with spherical polar coordinates θ and φ . Of course, this representation of $|\psi\rangle$ on the sphere is not a linear combination of the representations of the basis states $|0\rangle$ and $|1\rangle$ at the poles of the sphere. However this graphical representation is not an artificial one. Indeed, taking the ratio of the two coordinates

$$\xi = \frac{e^{i\varphi}\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} = \tan\frac{\theta}{2}e^{i\varphi}$$

provides the stereographic projection of $|\psi\rangle$, which is shown in red on the picture. This ratio takes its value in the (xy)-plane plus "a point at infinity", corresponding to the stereographic projection of $|1\rangle$. The other basis state $|0\rangle$ is sent to the origin of the (xy)-plane.

 $|0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$

MITSUBISHI ELECTRIC Changes for the Better

