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• Background of quantum technology trend

• Variational quantum algorithms

• Quantum Approximate Optimization Algorithm (QAOA)

• QAOA hybrid quantum-classical channel decoding

• Simulation and real quantum processor results

• New theory

• Degree optimization for QAOA-friendly channel codes

• Summary
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• Morgan Stanley: Quantum tech can drive 4th industrial revolution
• Escalating government funds: National Quantum Initiative $1.2B
• Quantum providers: IBM, Google, Microsoft, Honeywell, Intel, 

Nokia, AirBus, IONQ, rigetti

Background
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Free Python libraries to try quantum computing on realistic simulators or real devices
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• Quantum processing units (QPU) are already in front of us

• Various applications
– Chemistry, material science
– Machine learning
– Optimization

Quantum Computing … Not Far Future
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QPU
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• Hybrid use of quantum measurement and classical optimization
– VQE: Variational Quantum Eigensolver (2014)
– QAOA: Quantum Approximate Optimization Algorithm (2014)

Post-2014 Trend: Variational Quantum Principle
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• Quantum factoring by Shor’s algorithm (1994) showed super-
polynomial speed-up, … but requires noise-free quantum gates
• VQF (2018) can reduce required qubits by 4 orders of magnitude, 

by removing necessity of error corrections

Example: Variational Quantum Factoring (VQF)
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• Current quantum processors are noisy and limited-coherent:
quantum gates cannot be perfect

• For noisy intermediate-scale quantum (NISQ) devices, variational 
hybrid quantum-classical algorithms may be a viable driver for 
quantum supremacy due to shallow gates and noise resilience

Variational Quantum Algorithms for NISQ
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IdealReal
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• Alternating cost Hamiltonian and mixer Hamiltonian like annealing

• Convergence theorem to eigenstate for infinite-level QAOA
– Infinite Suzuki-Trotter decomposition with adiabatic annealing

• Classical optimization of variational angle parameters given 
quantum measurement

• Theoretical analysis showed better accuracy than classical 
counterparts; e.g. MaxCut, MaxSat, MaxClique

QAOA: Quantum Approximate Optimization Alg.
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• Construct Hamiltonian to maximize the cut

Example: QAOA for MaxCut Problem
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Wavefunctions
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• Theorem (2018): For level-1 QAOA, approximation performance 
depends on graph edge degrees:

QAOA-1 MaxCut Theory
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d e

f
Expected solution outperformed
best-known classical algorithms, Goemans-Williamson (1995)

Triangle =
Girth-6 in factor graph
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• This talk is not “Quantum Error Correction Codes (QECC)” to 
correct quantum errors in quantum channels/systems

• We want to correct classical errors with classical error correction 
codes (ECC) in classical channels through the use of CPU and QPU

Application to Channel Decoding Problem

7/12/19 11

Wired Network
Radio Network

Fiber-Optic Network
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• Hamming codes, Reed-Muller codes, Golay codes, convolutional 
codes, turbo codes, low-density parity-check (LDPC) codes, polar 
codes, …
• Suppose linear binary codes with generator matrix

• Communication channel exhibits noise

• Maximum-likelihood (ML) decoding for symmetric channels:

Classical Channel Decoding
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[01011100101011] à [01011100101011 00100101110111011] 
Redundancy: Parity

NP-hard 2k search for maximum correlation
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• Suppose we have ultra-smart phone, equipped with CPU, 
GPU/TPU, and QPU

• We use VQE/QAOA to realize quasi-ML decoding for reliable 
telecommunications

Hybrid Quantum-Classical Channel Decoding
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Noisy radio channels

Ultra-Smart Phone

QPU
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• Convert ML decoding problem into Ising Hamiltonian model

QAOA Channel Decoding
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k-bit search: 2k

k-qubit parallel operation

Pauli-Z

Z1 Z2 = XOR
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• [7, 4] Hamming code is best-known code for n=7 and k=4, having 
minimum Hamming distance of 3, which can correct 1 bit error
• Generator matrix:

Example: Hamming Code Hamiltonian

7/12/19 15

Degree:

Degree-3

Degree-1

c.f.) MaxCut Hamiltonian is regular degree-2
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• We consider Hadamard superposition state
– 50% chance of 0 or 1 measurement, thus random search

• We use admixing Hamiltonian for annealing
– Why? Its eigenstate is Hadamard state

Initial Quantum State and Mixer Hamiltonian
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Pauli-X

Eigenstate:
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• CPU:
– Given generator matrix G and received signal y
– Construct cost Hamiltonian with variational angles 
– Quantum shots on QPU to obtain quasi-ML decision
– Re-optimize angles if necessary and re-shot

• QPU: QAOA
– Initialize quantum state: |+> with Hadamard gates
– Apply gamma angle rotation with cost Hamiltonian C
– Apply beta angle rotation with mixer Hamiltonian B
– Repeat p-times for level-p QAOA
– Measure

QAOA Channel Decoding
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• State preparation: Hadamard H
• Mixer Hamiltonian operation: 
• Cost Hamiltonian operation:

Quantum Circuits for QAOA Decoding
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x p

Hamming code QAOA decoder 

Degree-d XOR: 2(d-1) CNOT
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• Rigetti pyquil is used for VQE with Nelder-Mead to optimize variational angles

• IBM qiskit is used for QAOA decoding simulation for validation

Quantum Simulation: Binary Symmetric Channel
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1/24

Random

QAOA-1

QAOA-2
QAOA-3

QAOA-4

QAOA-5
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• ML decision success probability can be improved by taking 
multiple measurements of QPU shots

Multi-Shot Decoding: IBM Q14 Melbourne Chip
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Ideal QAOA-1

Real QAOA-1

Random
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• Given code generator matrix, derive cost expectation

• For QAOA ansatz states with variational angles beta and gamma

• Cost Hamiltonian

• Mixer Hamiltonian

• Focus on each clause of cost Hamiltonian 

Theoretical Analysis of QAOA Decoding
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• For QAOA-1 decoding, cost expectation is expressed as follows:

where rho is rank, omega is weight of vector a, pi is weight of 
vector b, Gb is sub-generator matrix associated with b, and A is the 
number of conditional pairs subject to b=Gba
• This theorem holds for any arbitrary linear binary codes

New Theorem
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• Focus each clause in cost expectation

Mixer Hamiltonian (RX) on Cost Function
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Recall Pauli rules: 

Mixer X-rotations

Cost Z
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• d-ary Product of binary Pauli sum:

• Expand to 2d-ary sum of d-ary Pauli product:

• Let b={0,1}d indicate expansion term entangled either c’Z or s’Y

• Cost expectation will be proportional to

Binomial Expansion
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d

b=[0 0 0 … 0] b=[0 0 0 … 1] b=[1 1 1 … 1]

Admixing |+> measurement

Cost Z-rotations
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• Let                                                 be expanded Pauli product 
associated with binary indicator b
• Conjugate with cost Hamiltonian can be expressed by non-

commutable Hamiltonian Cb of rank rho

• Non-commutable sub-generator matrix Gb is column-selective G
whose weight is odd after Hadamard product

Cost Hamiltonian (RZ) on Expanded Pauli Product
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• Cost Hamiltonian conjugate on cost function:

• The non-commutable cost Hamiltonian operator is expressed

• Again, take binomial expansion from rho-ary product to 2rho-ary sum
• Let a={0,1}n indicate binary selection of eather cI or jsZ1 Z2…

Binomial Expansion of Cost Hamiltonian
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Non-compute?
How many pair?
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• Number of non-commutable pairs

Non-Commute Pair Enumerator
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2rho Pauli-product terms: a=[0,0,..0] to [1,1,…,1]

2d Pauli-product terms: b=[0,0,..0] to [1,1,…,1]

Counting the number of pairs: A

Same?
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• Corollary: QAOA-1 decoder of [16, 5] Reed-Muller codes has 
quantum eigenvalue:

Numerical Validation: Reed-Muller Code
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8192-shot sim
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• Corrolay: QAOA-1 decoder of [7, 4] Hamming codes has quantum 
eigenvalue:

Numerical Validation: Hamming Code
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8192-shot sim



© MERL

• Given analytical expression of eigenvalues, we can obtain optimal 
variational angles without need of VQE

Variational Angle Optimization
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Reed-Muller Code Hamming Code
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• It is known that degree distribution can be optimized by extrinsic 
information transfer (EXIT) or density evolution (DE) for LDPC 
codes when belief-propagation (BP) decoding is employed

How To Optimize Codes for Quantum Decoder?
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• Any linear codes have exactly identical ML performance over 
arbitrary full-rank basis transform

– Hamming distance spectrum is invariant

• Hamming code has average degree of 1.86, but it can be 
decreased to 1.71 and increased up to 2.71 via basis transform

• QAOA performance depends on degree distribution
– Lower vs. higher degrees? 

Degree Distribution Analysis
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d = [1 1 1 1 3 3 3] d = [2 2 3 3 3 3 4]

dave = 2.71
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Transformed Hamming Codes: QAOA-1 Eigen
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• VQE with Nelder-Mead, Cross-entropy loss

Transformed Hamming Codes: Level-p QAOA
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p=1

p=2

p=3

p=4

p=5

Low-density generator matrix (LDGM)?

Systematic
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• We introduced variational hybrid quantum-classical algorithms

• We applied QAOA to classical channel decoding problem

• We demonstrated the near-ML performance with QAOA decoding

• We evaluated performance on real quantum processor at IBM

• We developed theoretical framework to analyze QAOA decoding

• We optimized degree distribution of coding generator matrix 
focusing on Hamming codes ensemble

– We observed that empirically LDGM works well for QAOA-1 decoding

Conclusions
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• Time evolution of quantum states: Schrodinger equation

• We obtain steady-eigenstates:

VQE: Variational Quantum Eigensolver
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• Single qubit over C2 on sphere can be transformed by unitary 
operators (Stiefel Manifold), which has 4 degrees of freedom
• Complex 2x2 unitary operation is homomorphic to skew-

Hermitian, decomposable by Pauli matrices

• Exponential rule

• Rotation rule

Pauli Operator
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• Mixer Hamiltonian operator is based on X-rotation (RX gates)
• Cost Hamiltonian operator is based on Z-rotation (RZ gates)

• Quantum eigenvalue is conjugate product for cost function

• Commute or non-commute?

Commutation Rule Basics
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Commute: No operation

Non-Commute: Rotation

Commute: No operation

Entangled
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• Generator matrix

• 10th Cost (degree d=3): 

• Expansion: 2d=8 terms with indicator b

• Non-commute cost Hamiltonian of rank rho: Gb

• Expansion of cost Hamiltonian: 2rho terms with indicator a

Example: Reed-Muller Code

7/12/19 39

b=[000]

b=[111]
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• Generator matrix

• Count non-commute pairs over a and b such that

• Enumerator results of RM codes:

Example: Reed-Muller Code (Pair Counts)
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• VQE optimizes variational parameters based on Hamiltonian-energy relation:

• For QAOA, we typically optimizer parameters to maximize mean cost function: 

• It corresponds to minimizing average bit-error rate (BER)
• However, it does not minimize word-error rate (WER)

• We proposed to use cross entropy
to minimize WER

Side Note: Mean Cost vs. Cross Entropy
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• We should be careful of the real quantum gate depths depending on QPU 
coupling maps

• CNOT bridging and SWAP should be reduced

Side Note: Coupling Map for Real QPU

7/12/19 42

SWAP
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• Classical bit: {0,1} à Quantum bit: superposition of |0> and |1>

Bit vs. Qubit
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Bloch Sphere




