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Abstract

Precise perception of contact interactions is essential for fine-grained manipulation skills for
robots. In this paper, we present the design of feedback skills for robots that must learn to
stack complex-shaped objects on top of each other (see Fig. 1). To design such a system, a
robot should be able to reason about the stability of placement from very gentle contact inter-
actions. Our results demonstrate that it is possible to infer the stability of object placement
based on tactile readings during contact formation between the object and its environment.
In particular, we estimate the contact patch between a grasped object and its environment
using force and tactile observations to estimate the stability of the object during a contact
formation. The contact patch could be used to estimate the stability of the object upon
release of the grasp. The proposed method is demonstrated in various pairs of objects that
are used in a very popular board game.
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Tactile Estimation of Extrinsic Contact Patch for Stable Placement
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Fig. 1: Estimating extrinsic contact from tactile sensing: This work studies how extrinsic contact (indirect contact between
a manipulated object and an environment) can be estimated in the context of stable placement of an object in the environment
with partial support. The figure above shows an object stacking scenario using two lightweight wooden game pieces (from the
popular Bandu puzzle). (Left) The contact area between the two objects being stacked is critical to the success of the stack.
Vision-based tactile sensors mounted on the end effector and force-torque sensor provide us with a composite signal that
includes both intrinsic (direct) and (partially observable) extrinsic contacts. Our key innovation is to propose a learning-based
method to estimate the extrinsic contact patch using only the composite tactile signal and the knowledge of the force applied
by the end effector. (Right) This enables the robot to stack a highly irregularly shaped object on top of a very unstable tower.

Abstract— Precise perception of contact interactions is essen-
tial for fine-grained manipulation skills for robots. In this paper,
we present the design of feedback skills for robots that must
learn to stack complex-shaped objects on top of each other (see
Fig. [[). To design such a system, a robot should be able to
reason about the stability of placement from very gentle contact
interactions. Our results demonstrate that it is possible to infer
the stability of object placement based on tactile readings during
contact formation between the object and its environment. In
particular, we estimate the contact patch between a grasped
object and its environment using force and tactile observations
to estimate the stability of the object during a contact formation.
The contact patch could be used to estimate the stability of
the object upon release of the grasp. The proposed method is
demonstrated in various pairs of objects that are used in a very
popular board game.

I. INTRODUCTION

Humans can perform very complex and precise manipula-
tion tasks effortlessly. Consider, for example, gently stacking
two lightweight objects on top of each other without looking
at them, as shown in Fig. m Successful execution of this task
requires the object not to fall upon release of the grasp. In
these scenarios, stability is not directly observable; it must
be implicitly inferred from tactile signals that entangle both
intrinsic (direct) contact between the end effector and the
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grasped object and extrinsic (indirect) contact between the
grasped object and the environment. For example, in Fig. [T] it
is difficult to distinguish the stability of the configuration on
the left from the right by looking at it visually. This work is
motivated by how humans can disentangle a composite tactile
signal to determine the nature of extrinsic contact; and can
further predict whether a given stack configuration is stable.
We present a closed-loop system that similarly reasons about
object stability using tactile signals that arise out of extrinsic
contacts.

The stability of the object could be estimated from the
contact forces experienced by an object during placement.
The stability of an object is governed by the relative location
of the environmental contact and the center of mass location
of the object. The forces observed by the force-torque (F/T)
sensor mounted on the wrist of the robot, as well as the
deformation observed by the tactile sensors co-located at
the gripper fingers, depend on the contact patch between
the object and its environment, as well as the geometric
and physical properties of the object. As a simplification,
we assume that the geometry of the objects is fixed, so
the robot works with known pieces. Under this assumption,
the problem of estimating the stability of placement from
tactile observations is simplified. With this understanding,
we try to estimate the contact patch between the object and
the environment using tactile signals. However, estimating
contact patches from a single tactile observation is a partially
observable problem. Thus, a perfect estimate of the contact
from a single interaction is impossible.

To solve the partial observability problem, we present a



method for aggregating information from multiple observa-
tions. The proposed method collects tactile observations by
interacting with the environment multiple times and updates
its belief in the underlying contact formation. We show that
we can monotonically improve our estimate of the contact
formation between the environment and the grasped object.
This estimate is used to move the object towards a stable
configuration so that it can be released in a stable pose.
This is demonstrated using several pairs of objects from a
popular board game where the objective is to incorporate a
new block on an existing tower without destabilizing it. We
also perform ablations to understand which sensing modality,
the F/T sensor or the vision-based tactile sensor is helpful in
understanding the phenomena during the considered contact
phenomena.

Contributions: In summary, our contributions are the

following.

1) We present a method for estimating extrinsic contact
patches from end-effector tactile signals that compose
both intrinsic and extrinsic contacts.

2) Our probabilistic filtering approach for use in a feedback
control loop can stably stack a set of extremely chal-
lenging real-world objects using solely tactile sensing.

II. RELATED WORK

Block stacking. Block stacking is one of the most widely
studied problems in robotics. Several studies have addressed
the problem of robot stacking through various approaches.
These include learning to schedule auxiliary tasks for re-
inforcement learning (RL) [1], combining demonstrations
and RL [2], [3], employing sim-to-real transfer [2], [4], [5],
and using task-and-motion planning [6]. The focus of these
works primarily revolves around stacking simple cubes. Lee
et al. [7] propose a benchmark that introduces relatively
irregular rectangles generated by deforming cubes. However,
these objects still maintain convexity and simplicity. Furrer et
al. [8] and Liu et al. [9] have explored the stacking of irregular
stones. Another related work that discusses vision-based
contact support could be found in [10], however, this assumed
access to the geometry of the object and was indeed reasoning
about the relative placement between blocks given the object
geometries. Nevertheless, these studies make assumptions
regarding knowledge of geometry and assume that objects
possess wide support and high friction, simplifying the
problem and enabling basic pick-and-place strategies. Most
importantly, these works do not reason about stability using
contact information but rather perform placement using open-
loop controllers. These pick-and-place stackings would not
work if there is ambiguity in the location of the environment
(for example, the scenario shown in Fig. [T). To address this
problem, our proposed method considers the local contact
phenomenon in which the object can topple and fall if it is
not placed with the proper support. Moreover, we remove
assumptions regarding the geometry of the underlying objects,
necessitating the estimation of stability through interactions.

External contact localization Prior works represent con-
tacts as a set of points [11], [12] and lines [13], [14]. Although

line contacts give us more information compared to point
contacts, they require active exploration involving changes
in gripper orientation [13], [14], making it difficult to apply
them in our setting where the tower is very unstable. The
closest work to ours is the neural contact fields (NCF) of
Higuera et al. [15], where the authors estimate the contact
patch between a grasped object and its environment. While
NCF is evaluated on a simulation and a limited number
of objects, we tested our method on unknown geometries
of the environment, which can be used for an appropriate
downstream task in a real system.

III. PROBLEM STATEMENT

We are interested in performing a stable placement in
environments where the object might have partial support
for placement. Consider, for example, the scenario shown in
Fig. [1} where it is not enough to establish contact with the
bottom piece but rather to estimate the object’s stability in the
resulting contact formation. Thus, we consider the problem of
estimating the stability of an object when in contact with its
environment in an attempt to release and place the object in a
stable pose during a task. This is a partially observable task,
as we cannot observe the full state of the system, and thus,
stability needs to be estimated from sensor observations. We
assume that the robot has access to tactile sensors co-located
at the gripper fingers and a Force/Torque (F/T) sensor at the
wrist. A certain contact formation is stable if the object can
remain stable after being released from the grasp.

The stability of a contact formation depends on the relative
position of the center of mass of the object and the contact
patch between the object and the environment. However,
this cannot be directly observed during a contact formation,
and thus leads to partial observability. A robot can usually
observe force-torque signals and/or tactile images during
interaction. The observed signals depend not only on the
contact formation but also on the geometry and physical
parameters of the grasped object. Thus, although these data
have a lot of information, these are all entangled, and thus it
is very difficult to extract specific information, e.g., estimate
contact patch. The stability estimation problem in its full
scope requires reasoning about the sensor observations while
considering the geometric information of the objects. To
simplify the estimation problem, we make the following
assumptions to limit the scope of the current study.

1) Geometry and physical parameters of the grasped

objects are fixed.

2) All objects are rigid and have flat surfaces.

It is important to emphasize that the robot is unfamiliar with
the shape of the underlying objects and needs to explore a
stable configuration through several probing attempts. These
assumptions restrict the use of our proposed objects to known
objects. A full and in-depth study of the problem is left as a
future exercise.

IV. METHOD

This work addresses the primary challenge of estimating
stability during placing irregular objects. Since the contact
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Fig. 2: Pipeline: Our method comprises four components. First, a robot probes the environment to establish contact between
the grasped object and the target object upon which it must be stacked. During this probing phase, we acquire a sequence of
force/torque measurements and tactile images. We then estimate the extrinsic contact patch and, in turn, the potential stability
of the resultant configuration. Subsequently, we aggregate the information from multiple interactions to update the belief map
of the contact state. We pick the action that maximizes the contact patch between the objects.

formation between a grasped object and the environment
generates sensor observations, we estimate the contact patch
between them from force and tactile measurements. We
propose a framework consisting of four key components.
First, the robot estimates the contact patch between the
grasped object and its environment from an observation
obtained by interacting with the environment. Then, it assesses
stability based on the estimated contact patch; and releases
the grasped object if it believes the current configuration
is stable; otherwise, it aggregates information from multiple
estimated contact patches to predict a belief map, which gives
us a sense of the contact surface of the environment. Finally,
the robot selects an action that moves the grasped object to a
position that it believes can improve stability. In this section,
we describe these four modules in more detail.

A. Contact Patch Estimation

Given the observed tactile image 0™ and F/T measure-

ments of T, our objective is to learn a model that generates
a probabilistic contact patch S, which consists of a set of
probabilities indicating which part of the grasped object is
in contact.

Contact representation. To estimate the contact patch, we
discretize the contact surface of the grasped object .S into
N points as S = {s1,...,sny} each of which corresponds
to a specific location on the contact surface of the grasped
object (see Fig. E| right). For each point s;, we predict the
probability of being in contact or remaining uncontacted
p(s;). Consequently, we represent the probabilistic contact
patch S as a set of probabilities S; = {p(s1), ..., p(sn)}.

Data collection by interaction. During a duration of
T seconds, the robot applies a downward force along the
negative Z axis for d mm, while collecting 0™, ofT from
tactile and force-torque sensors at a frequency of 10 Hz.
Specifically, o™ = {of*}I_ ;. where of* € R?*? with
252 = 2 x 2 x 7 x 9, where we use two tactile sensors
mounted on each finger and measure marker displacements
on the XY axis in the tactile image, and 7 x 9 is the number
of markers in column and row (see Fig. Q) which can be

obtained by post-processing the tactile image 1. Similarly,
ofT = {ofT}T ), ofT € RS is the F/T measurement. We use a
suitable impedance control to prevent the object from falling
by using excessive force. In the data collection process, we
add displacements in the XY plane such as & ~ {Zpin, Tyax }
and ¥ ~ {Ynin, Ynax } Whose origin is the center position of
the contact surface of the lower object O (see Fig. EI), and the
minimum and maximum ranges are defined to ensure contact
between the flat surfaces of the upper and lower objects.
We use known geometries and displacements to generate
ground-truth contact patches for training a model.

Training. Finally, we train a contact patch estimation model
feontact that takes observation 0™, ofT and learns to generate
a probabilistic contact surface S as:

S« — fconlact(OTac7 OFT). (1)

This model is trained by minimizing the binary cross-entropy
loss for each data point s;. We use LSTM [16] with two
layers, each having 256 units, to build the model to capture
patterns in time-series data.

B. Stability Estimation

We utilize the estimated contact patch S to estimate the
stability of the current configuration. To do that, we first
construct a convex hull C' € Convex(g) (see Fig.[2[ (b)) using
points whose associated probability exceeds a predefined
threshold denoted by §, which we use § = 0.9 for our
experiments. Subsequently, we check that the convex hull
includes the position of the center of mass of the grasped
object. In the affirmative case, the gripper releases the grasped
object. Otherwise, the gripper aggregates information and
moves towards a stable position by an action selection strategy
described in the following sections.

C. Aggregating Information from Multiple Interactions

Since the estimation of the contact patch from tactile
signals is a partially observable task, that is, multiple
different contact patches can yield similar tactile signals,
it is difficult to reliably estimate the contact patch from a
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Fig. 3: Definition of the probabilistic contact patch. (Left)
The displacement (x, y) is added from the origin of the bottom
object O during data collection. This displacement and known
contact surfaces of the two objects give the ground-truth
contact surface S. (Right) The discretized contact patch S
consists of a set of probabilities p(s;) that represents whether
a specific position s; of the contact surface of the grasped
object is in contact or not.

single interaction. Therefore, we aggregate information from
multiple interactions to disambiguate the estimate.

We denote the aggregated contact patch at the time step
i as Sf , again representing a probabilistic contact surface
of the bottom object SP = {p(sP,), ..., p(s¥ ;)}, where M
is the number of discrete points. Following Ota et al. [17],
the probabilistic formulation of the contact p(s?) (note we
remove lowercase m for simplification) given past observation
and action can be formulated as

p(sPlorio1,a1.i-1)

2)
B|.B B (
= /p(si |si1, @i—1)pP(8;-1|01:i-1, G1:i-1),
where the first term is 1 as we assume deterministic dynamics,
and the second term is initialized with the prior distribution
and can be obtained through recursion. The posterior can be
computed as:

p(sP|o1., a1.i-1) o< ploi|sP)p(sPloriz1,a1i-1),  (3)

where the first term is given by the contact patch estimation
model f" and the second term can be computed from
Eq.(2). Specifically, we initialize the probability with p(s&) =
Bernoulli(0.5) since we do not know whether the specific
point is in contact or not before interaction.

D. Action Selection

To realize a stable configuration, we design a policy that
maximizes the contact surface area in the next step. The policy
begins by calculating the central position of the c]gnvex hull of
W, where C'B
is again the convex hull of the aggregated contact map, and
subsequently directs the robot to navigate in the direction to
this central position from the current position. Furthermore, to
mitigate large movement at each step, we restrict movement
within d™*¢ mm if the norm exceeds d™°*. We specifically
set ™ = 3 mm.

the aggregated contact patch sos =

Test
Bottom Pieces
Short, Long
Top Pieces
Mushroom, Barrel, Pot

Train

(a) 3D printed board
used for training

(b) Real Bandu pieces
used for testing (novel objects)

Fig. 4: The 3D printed board and Bandu pieces used in our
experiments. (a) We use the 3D printed board for training
data collection. The board includes small and large circles
with diameters of 15 and 25 mm and one square whose length
is 15 mm. (b) The first two pieces on the left serve as the
bottom objects (or the environment), while the subsequent
three on the right are designated as the grasped (top) objects.
These pieces have been assigned the following names: Short,
Long, Mushroom, Barrel, and Pot from left to right.

V. EXPERIMENTS
A. Settings

Tactile sensor. We use a commercially available GelSight
Mini tactile sensor [18], which provides 320x240 compressed
RGB images at a rate of approximately 25 Hz, with a field
of view of 18.6 x 14.3 millimeters. We use gels that have
63 tracking markers.

Robot platform. The MELFA RV-5AS-D Assista robot,
a collaborative robot with 6 DoF, is used in this study. The
tactile sensor is mounted on the WSG-32 gripper (see Fig. [2).
We use a Force-Torque (F/T) sensor which is mounted on
the wrist of the robot and used two-fold. First, we collect
force observations that are used as input to the contact patch
estimation model [, Second, the stiffness control of the
position-controlled robot.

Bandu. We use pieces from Bandu for our experiment.
Bandu is a toy game that involves stacking objects onto a base
plate. Players take turns stacking these objects and compete to
see who can stack the most. Each piece has a highly irregular
shape, which requires robots to estimate stable placements
based on the shape of the objects. Figure [] illustrates the
Bandu pieces used in our experiments. The challenge in the
game is to accommodate an irregular piece in an existing
tower without destabilizing it.

B. Data Collection

Settings. We first show the distribution of the observed
tactile signals to understand the difficulties of the task. We
collect 2000 tactile signals for each pair of top-bottom
objects to train the contact patch estimation model jfeonact
by interacting with three objects on the 3D printed board
as shown in Fig. [] (a), resulting in 6000 training samples.
During data collection, we add random displacements on the
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Fig. 5: Distribution of contact patches: (a) Training data distribution with Pot as the grasped object and three different 3D
printed shapes as the bottom objects (see Fig. ). Each row shows the data obtained from different primitive shapes and
each column shows the distribution of different data types: tactile displacements on the XY axes (only shows the maximum
absolute values from all 63 tracking markers), moments on the XY axes and force F,. The horizontal and vertical axes
show the displacements randomly added during data collection (see Fig. [3), and the black circle or rectangle in each graph
shows the contour of the bottom object. (b) Example contact patch sampled from the star points (%) in the left distributions.
Although these contact patches are very different, the tactile signals look quite similar as seen in the data around the star
point, showing the difficulty of the task; i.e., similar tactile signals can lead to very different contact patches.

XY axis as defined in Fig. [ and let the robot go down for
d = 1.5 mm after establishing contact with the bottom object
for T' = 2 seconds using the stiffness controller whose gain
parameter is (K, Ky, K,) = (30,30,15) [N/mm]. We use
the grasping force of 10 [N].

Results and Analysis. Figure [5] shows the data distribution
(left) and example contact patches (right). From the first to
the fourth columns, we can observe the inherent difficulties
of the estimation task. In many cases, we do not observe
any symmetric distribution of 03", 0,* and the moment
measurements 7, T, about X = 0 or Y = 0. This could
possibly be attributed to the inaccuracy in the 3D printing
of the board or the slip of the object in the grasp during the
contact interaction. Fig. [3] (b) shows three contact patches
sampled from the star positions in each row. While tactile
signals near the star positions are very similar, the resulting
contact patches are very different. This highlights the partial
observability of the underlying contact formation, indicating
that a single tactile observation may not be sufficient to
localize the contact formation. This ambiguity makes training
of a machine learning model very difficult because similar
inputs (i.e., tactile observations) can lead to totally different
outputs (i.e., contact patches).

C. Contact Patch Estimation

Settings. Next, we compare the performance of the contact
patch estimation on different input modalities. We train the
model M for each top object using the dataset collected
in Sec. [V-B| and we evaluate the model using the intersection-
over-union (IoU) and binary classification metric. We compare
the performance with three different input modalities, a F/T

TABLE I: Comparison of the contact patch estimation
performance on different input modalities measured by IoU
and binary classification accuracy. Bold numbers show the
best results among the three different input modalities. The
S and L of the bottom objects correspond to the Short and
Long objects, respectively (see Fig. E[)

Mushroom Barrel Pot

S L N L N L
FT 274 377 29.6 44.5 23.8 53.2
ToU Tac  33.6 22.2 31.5 42.6 16.5 37.5
FT+Tac 38.4 50.7 31.9 412 24.8 54.8
FT 674  65.5 75.3 73.1 68.0 71.9
Acc Tac  72.9 60.4 76.5 T7.5  66.9 71.7
FT+Tac 77.9 73.8 77.0 754 67.3 74.9

sensor, tactile sensors, and the combination of the two denoted
as FT, Tac, and FT+Tac, respectively. The evaluation is carried
out using unseen two Bandu pieces (see Fig. [), which we
denote as Short and Long. We used a 3D-printed jig to ensure
that the robot always grasps the same position of the top object
and collected 400 interactions with random displacements.
Results and Analysis. The results are presented in Table
When comparing the three modalities, we can clearly see
that the combination of tactile sensors and the F/T sensor
(FT+Tac) yields the best performance. Consequently, for
our subsequent experiments, we will utilize both of these
modalities. However, it should be noted that the model is
not confident enough to estimate the contact patch. This is
because the same tactile signals can lead to different contact
patches, as discussed in Sec. [V-B] Therefore, in the next
experiment, we will aggregate information from multiple
interactions and compare performance in stability estimation.



TABLE II: Stability estimation performance measured by
binary accuracy. n indicates the number of interactions and
bold numbers show the best results.

Mushroom Barrel Pot
S L S L S L
Implicit 73.7 73.0 63.9 69.8 64.2 66.0
n=1 698 81.0 63.7 71.4 61.7 69.4
Ours n=2 884 93.0 92.7 88.9 83.2 83.9
n=3 93.0 93.2 97.3 92.1 91.1 85.7

n=3 n=5

n=1

Fig. 6: An example of how the proposed method aggregates
multiple estimations and updates contact probability map.
The circle in a solid line shows the ground-truth contour
of the bottom object. While the initial estimate (n = 1) is
incorrect, the estimation accuracy monotonically improves
with multiple interactions (n = 3, 5).

D. Stability Estimation

Settings. Next, we assess the stability estimation perfor-
mance of the proposed method. We reuse the same data as
used in the previous experiments with an additional binary
label indicating whether the current configuration is stable by
checking whether the geometric center of the bottom surface
of the grasped object (i.e., the projection of the center of mass
of the grasped object on the bottom surface) lies inside the
contact patch. We compare our method with a baseline model
that directly produces the stability probability by replacing
the final layer of f"*t with a fully connected layer with
a single unit and sigmoid activation. We name it Implicit
because it implicitly estimates stability, while our framework
explicitly predicts it through the estimated contact patch.

Results and Analysis. Table[[l|shows the qualitative results.
Single interaction leads to poor performance, as seen in the
results of the baseline (Implicit) as well as our method with
single interaction (Ours n = 1). However, by aggregating
the estimates of multiple interactions, the stability estimation
performance improves significantly, leading to an average
accuracy of 90%. Figure [6] shows how the probability of a
contact patch changes during interactions. It shows that the
method corrects the initial inaccurate estimate and improves
accuracy with additional interactions, and the method finally
reconstructs the contact surface of the bottom object with
reasonable accuracy.

E. Stacking

Settings. Finally, we evaluate the stacking performance of
the method. We always initialize the first interaction from
an unstable contact state (i.e., the object would topple upon

TABLE III: Success rate of stacking. One and Two means
stacking on top of a single and two objects, respectively.

Mushroom Barrel Pot
S L S L S L
On Pick & Place 0/10 0/10 0/10 0/10 0/10 0/10
Ours 8/10 6/10 8/10 5/10 7/10 6/10
Two Ours 6/10 5/10 7/10 5/10 6/10 5/10

n=>5

n=1 n=3

Fig. 7: The robot moves towards a stable configuration and
successfully stacks the Barrel piece on top of an already built
tower consisting of Short and Long.

release of grasp). We run the method 10 times for each piece
and evaluate whether the robot successfully places the piece
in a stable configuration. Furthermore, we also test the method
in a harder scenario, where the Long piece is already stacked
onto the Short piece (see Fig. [ for the definition of the
pieces), and we stack a top piece on top of these two objects.
We compare our method with a Pick & Place baseline, where
it releases the piece without estimating the stability.

Results and Analysis. Table [[1I| shows the results. The pick-
and-place baseline fails in all trials. The proposed method
improves performance by predicting the contact patch at
each iteration and aggregating information to improve the
estimation accuracy. Although the success rate drops when
the number of bottom objects is increased, the method can
still succeed with a success rate of around 60%. Figure [7]
shows a qualitative result of how it moves to the more stable
position.

VI. CONCLUSION

Designing systems that can interpret and disentangle useful
contact information from observed tactile measurements is
the key to precise and fine manipulation. We proposed a
framework for estimating extrinsic contact patches from tactile
and force-torque measurements. Contact patch estimation
allows us to estimate the stability of the placement of several
different objects in novel and unstable environments. We
tested the proposed approach for the placement of several
pieces of the game of Bandu, which is known to be a difficult
stacking task. In the future, we would like to improve the
performance by training on a wider variety of objects and
relaxing the assumption of the known geometry so that the
trained model can be used for the stacking task with arbitrary
objects.
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