
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Hierarchical Planning for Autonomous Parking in Dynamic
Environments

Wang, Yebin; Hansen, Emma; Ahn, Heejin

TR2024-034 April 04, 2024

Abstract
This paper investigates planning for autonomous parking in a dynamic environment where
moving obstacles are present. To fulfill fast planning, we employ a divide-and- conquer ap-
proach where path planning with static obstacles and safe motion planning with moving
obstacles are solved sequentially. We develop a bi-directional improved A-search guided tree
algorithm to achieve fast path planning by proposing two modifications to node selection
and node expansion of the A* algorithm. First, with the simultaneous construction of two
trees rooted at the initial configuration and goal configuration, respectively, the arrival costs
of both trees are shared to better estimate the cost-to-go, which improves node selection.
Second, by partitioning motion primitives into prioritized modes to facilitate mode selection,
node expansion grows the tree toward a more finely tuned direction. For safe motion plan-
ning, we define conflict areas as segments of the path that overlap or intersect with moving
obstacles’ paths and then develop scheduling algorithms to assign time intervals during which
the ego vehicle can occupy each conflict area. Particularly, to improve throughput and lower
computational complexity, we divide large conflict areas into small areas and establish that,
in certain scenarios, the original scheduling problem can be decoupled into sub-problems in-
volving the subsets of conflict areas. Simulation verifies the effectiveness of the proposed
architecture and algorithms.

IEEE Transactions on Control Systems Technology 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Hierarchical Planning for Autonomous Parking in

Dynamic Environments
Yebin Wang, Senior Member, IEEE, Emma Hansen, and Heejin Ahn, Member, IEEE

Abstract—This paper investigates planning for autonomous
parking in a dynamic environment where moving obstacles
are present. To fulfill fast planning, we employ a divide-and-
conquer approach where path planning with static obstacles
and safe motion planning with moving obstacles are solved
sequentially. We develop a bi-directional improved A-search
guided tree algorithm to achieve fast path planning by proposing
two modifications to node selection and node expansion of the
A* algorithm. First, with the simultaneous construction of two
trees rooted at the initial configuration and goal configuration,
respectively, the arrival costs of both trees are shared to better
estimate the cost-to-go, which improves node selection. Second, by

partitioning motion primitives into prioritized modes to facilitate
mode selection, node expansion grows the tree toward a more
finely tuned direction. For safe motion planning, we define conflict
areas as segments of the path that overlap or intersect with
moving obstacles’ paths and then develop scheduling algorithms
to assign time intervals during which the ego vehicle can occupy
each conflict area. Particularly, to improve throughput and lower
computational complexity, we divide large conflict areas into
small areas and establish that, in certain scenarios, the original
scheduling problem can be decoupled into sub-problems involving
the subsets of conflict areas. Simulation verifies the effectiveness
of the proposed architecture and algorithms.

I. INTRODUCTION

PLANNING, originating in robotics [1], has been recently

studied in the context of autonomous vehicles [2]. This

work strives to achieve fast planning for autonomous parking

in a dynamic environment that not only is tight on space but

also contains moving obstacles. The problem is challenging

in several perspectives. First, planning in a static environment

has been recognized as PSPICE-hard [3]. Second, tightness

implies that the region containing feasible paths is small

relative to the whole space; thus, finding a feasible path could

be time-consuming. Third, autonomous driving imposes more

stringent real-time requirements than robotic applications.

Well-established results for planning in static environments

include optimal control [4]–[6]; mixed-integer linear program-

ming (MILP) [7], [8]; potential fields [9]; sampling-based al-

gorithms such as probabilistic roadmaps (PRM) [10], rapidly-

exploring random trees (RRT) [11], RRT* and PRM* [12],

particle RRT [13], anytime RRT [14], [15]; and A* [16] and

Y. Wang is with Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA 02139, USA. (email: yebinwang@ieee.org)

E. Hansen is a PhD student in the Department of Mathematics at the
University of British Columbia, Vancouver, BC, Canada. This work was done
while she was an intern with MERL. (email: ehansen@math.ubc.ca)

H. Ahn was a visiting research scientist at MERL and is now an As-
sistant Professor at the School of Electrical Engineering, KAIST. (email:
heejin.ahn@kaist.ac.kr)

its variants [17]–[20]. Optimal control is well-suited for sim-

ple environments but results in hardly tractable optimization

problems for general scenarios. The mixed-integer formulation

ameliorates the numerical stability of optimization solvers

but is accompanied by an increase in computational load.

Potential fields are susceptible to being trapped in local min-

imums and are not complete. Sampling-based methods [10]–

[12], [21] construct a sparse representation of the collision-

free configuration space and partially address the curse of

dimensionality, with guaranteed probabilistic completeness in

many circumstances. Deterministic algorithms such as A* and

D* achieve resolution-completeness and optimality guarantees

under certain circumstances [22]. For sampling-based methods

and A*, a key pathway to real-time applications is quickly

growing a graph towards a goal configuration [2], [23].

Planning work for dynamic environments has been limited.

Having recognized how unlikely it is to find a global trajectory

reaching the target within a given computation budget, [33]

proposes a partial motion planner to obtain a local trajectory.

Similarly, results in [34] exploit receding horizon control

to determine a local path and motion plan simultaneously.

These methods are quick, but lack completeness. Alternatively,

one can focus on completeness, while sacrificing run-time.

D* [1], [24] deals with slow-moving obstacles by repairing or

replanning the path. RRT-based results [25] handle moving

obstacles at the steering level, where any local trajectory

undergoes a collision check against moving obstacles. Works

[21], [26]–[28] follow a state-time notion, where the time is

treated as an additional state, and construct graphs at all time

instants. The construction of such a spatial-temporal graph

appears to be computationally prohibitive and constitutes the

key hurdle to real applications. In [29], the authors introduce

safe time intervals associated with configurations occupied by

moving obstacles to narrow down the search space and accel-

erate the construction of the spatial-temporal graph. Following

the decomposition idea, works [30]–[32] propose a dynamic

roadmap, where a roadmap is constructed offline from static

obstacles and is updated online based on moving obstacles.

A variety of planning methods have been tailored to au-

tonomous parking. Early works [35], [36] focus on real-

time motion planning for specific parking scenarios in static

environments, and it is not obvious how to generalize to

dynamic environments. Optimal control-based results [37]–

[40], although dealing with moving obstacles and being gen-

eral, are not suitable for real-time applications because of

their reliance on good initial guesses and are computationally

taxing. Sampling-based methods and A* have resulted in

considerable progress in general parking, e.g. RRT-based [41],

[42], heuristic-based search [43], and A* search-based [20],

[44]. Instrumented with biased sampling strategies or heuris-

tics, small trees can be quickly constructed to meet computa-

tional and memory constraints imposed by vehicle platforms.

However, most of these results either do not consider moving

obstacles or fail to meet real-time specifications. Existing

planning solutions for autonomous parking need improvements

to meet customer demands in multiple aspects: computational

efficiency, applicability to general parking tasks, and capability

of dealing with moving obstacles.

Contributions: This work adopts the divide-and-conquer

approach in [30], [45] to fulfill real-time planning for au-

tonomous parking in environments containing moving obsta-

cles. We perform planning by solving two sub-problems: path

planning with static obstacles and safe motion planning with

moving obstacles. We now discuss the noticeable differences

between our approach and the method proposed in [45].

Taking the motion planning stage as an example, motion

planning in [45] is recast into path planning over a directional

visibility graph (DVG). The DVG is constructed based on

the monotonicity of time and maximum velocity constraints,

and forbidden zones in the time dimension (forbidden zones

characterize the intersections between the robot’s path and

obstacles’ trajectories). Our work resorts to a hierarchical

framework [46]: an optimization-based scheduler on the top

identifies all possible conflict areas (CAs) based on the path

of the ego vehicle and trajectories of moving obstacles, and

schedules when to enter CAs, and an underlying analytical

motion planner generates the motion according to the sched-

ules.

Regarding path planning, a Bi-directional Improved A-

search Guided Tree (BIAGT) is developed to fulfill real-time

path computation in static environments. It improves A* in

two aspects. First, by partitioning motion primitives (MPs)

into multiple modes and assigning each mode a priority, a

node is expanded according to mode selection. During the

expansion, only the MPs of the mode with the highest priority

will be applied. Second, we propose an alternative approach

to estimate the cost-to-go, which is notoriously difficult to

reckon with due to its dependence on the environment and

vehicle dynamics [47]. By simultaneously constructing a start

tree and a goal tree rooted at the initial configuration and goal

configuration, respectively, the cost-to-go of nodes on one tree

could be better estimated by incorporating the arrival costs of

nodes on the other tree. The rationale behind this mechanism is

that the other tree’s arrival cost contains obstacle information

around the goal of the current tree. BIAGT demonstrates

effectiveness in most scenarios, especially if obstacles are

near the goal. It enjoys the same completeness property as

A* and typically produces a smaller tree. Unfortunately, to

bring in computational advantages, the cost-to-go has to be

overestimated, which implies a less favorable path than A*.

BIAGT could perform worse if the arrival cost of the other

tree provides misleading information, and how to detect and

avoid this pitfall is left for future work.

Given the path computed by BIAGT, we follow the hier-

archical framework developed in [46] to solve safe motion

planning in dynamic environments, where CAs are treated as

resources that are shared by moving obstacles and the ego

vehicle. A scheduler determines the timing for the vehicle to

enter CAs by solving an MILP problem, and an underlying

algorithm computes the motion according to the scheduling

decision. It is noteworthy that work [46] facilitates intersec-

tion management, where CAs are typically small. In garage

parking, CAs could arise from intersections and overlapping

of paths, where the latter could yield large CAs. A plain

adoption of results in [46] could lead to conservative solutions,

amounting to low operation efficiency. We propose two cus-

tomizations, where the first improves the garage throughput by

splitting a large, connected CA into small concatenated CAs,

and the second addresses computational complexity by de-

coupling the scheduling problem into separate sub-problems.

It is worth pointing out that the scheduler and the underlying

trajectory generation compute the reference trajectory of the

ego vehicle. Thus, the scheduler has full access to the reference

trajectories of moving obstacles. This assumption is acceptable

for garage systems with centralized management. Meanwhile,

assuming that the control systems of both the ego vehicle

and the moving obstacles execute their reference trajectories

precisely, the scheduler may run only once before the ego

vehicle starts moving. To ensure safety during movement, the

trajectory tracking control module reacts to tracking errors

such that the ego vehicle does not violate the safety constraints

imposed during scheduling.

This approach has strong ties to a variety of existing

methods. For instance, BIAGT uses similar observations to

[2], [47], [48]: it is crucial and effective to encode obstacle

information into the estimated cost-to-go. The prioritized node

expansion and sharing arrival costs of both trees to improve

the cost-to-go estimate have been proposed in [20], where

both ideas are implemented in individual algorithms. The idea

of splitting obstacles into static and dynamic categories and

treating them differently can be found in [30], [45], [49],

[50]. Differences between the literature and our approach

are also pronounced. For example, dynamic obstacles are

handled reactively and locally in [49], [50]. This treatment

necessarily incurs performance loss, whereas our work takes

all information into account for a global solution before the

ego vehicle starts moving.

The remainder of this paper is organized as follows. The

planning problem and system architecture are provided in

Section II. Section III presents BIAGT and the performance

analysis. Section IV elaborates on the hierarchical solution

to the safe motion planning problem. Simulation results are

included in Section V, followed by conclusions in Section VI.

II. PRELIMINARIES

A. Motivating Application

Imagine how an autonomous vehicle can safely enter or

leave a garage as shown in Fig. 1, where parking lots are

arranged to admit one-way traffic. A garage management

server (GMS) processes service requests from vehicles and

verifies motion plans of vehicles. A sensing system provides

real-time high-fidelity mapping and localization service. A

communication system facilitates information exchange be-

tween infrastructure (GMS and sensing) and vehicles.

Take incoming traffic as an example. A vehicle at con-

figuration q0 requests parking. GMS assigns and sends a

target lot qf to the vehicle, along with a static map Ws

of the garage and trajectories of moving obstacles Ro. The

vehicle generates and submits the motion plan to GMS for

approval. The vehicle, assisted by infrastructure, is responsible

for computing a control sequence to reach qf .

Remark 2.1: An autonomous vehicle relies on the mapping

and localization service of infrastructure for planning and

control because the quality of onboard sensors is presumably

inferior to that of the infrastructure. A high-quality mapping

and localization service lessens uncertainties that the planner

and vehicle controller combat, and improves system safety and

operational efficiency. Large uncertainties lead to conservative

plans with slow execution. �

A1 Parking lots A10

B1 B10

C1 C10

D1 D14

E1

E4
S
en
so
r

Parking lots

Parking lots

Parking lots

C
o
m
m

G
M
S

S
en
so
r

C
o
m
m

S
en
so
r

C
o
m
m

q0

Fig. 1. Garage facility layout.

B. Planning Problems

Consider a robot with the following dynamic model

ẋ = f(x,u), (1)

where x ∈ X ⊂ Rnx is the state, u ∈ Rnu the control, and

f(·, ·) : Rnx × Rnu → Rnx a smooth vector field. A feasible

trajectory is a collision-free solution x(t) of (1) with initial

conditions and u(t), i.e., the robot moving along it does not

intersect with obstacles in the environment.

Consider the following fifth-order model of a front-wheel

drive vehicle [51]
ẋ = cos(θ)v

ẏ = sin(θ)v

θ̇ = tan(φ)
v

L
ṡ = |v|

v̇ = a,

(2)

where (x, y) are the coordinates of the midpoint of the

rear wheel axis, θ the vehicle orientation, s the longitudinal

distance, v the velocity along the vehicle orientation, φ the

steering angle, a the acceleration, and L the distance between

(x, y) and the midpoint of the front wheel axis. The control

input is u = (a, φ)⊤ where a and φ are subject to physical

constraints |a| ≤ amax and |φ| ≤ φmax, respectively, i.e.,

the domain of admissible control is U , [−amax, amax] ×
[−φmax, φmax]. The vehicle has the minimum turning radius

R = L/ tan(φmax).

This work investigates the following planning problem.

Problem 2.2: Consider the vehicle model (2) with x =
(x, y, θ, s, v)⊤ and u = (a, φ)⊤ ∈ U. Given a dynamic map

Wd comprising a static map Ws and trajectories of moving

obstacles Ro, an initial state x0, and a goal state xf , find

a feasible trajectory R(t) : R → X , ∀t ∈ [0, tf] such that

R(0) = x0,R(tf) = xf .

Our approach follows the divide-and-conquer approach to

solve Problem 2.2, by defining and tackling the following path

planning and safe motion planning problems separately.

Path planning: Path planning hinges on concepts such as

configuration and configuration space [23]. A configuration

q ∈ Rnc of system (1) is a complete specification of the

position of every point in the system. The configuration space,

denoted by C ⊂ R
nc , represents all possible configurations.

The state space X typically has a higher dimension than C. A

collision-free configuration space, Cfree, is the set of collision-

free configurations. Because both vehicles and obstacles can

occupy the same space, it is non-trivial to represent Cfree
analytically. Since q = (x, y, θ)⊤ uniquely determines the

locations of all points on the vehicle, the configuration space

is C ⊂ R2×S1, where S1 denotes the one-dimensional sphere.

The corresponding kinematic model of the vehicle is [52]

ẋ = cos(θ)v

ẏ = sin(θ)v

θ̇ =
vφn

R
,

(3)

where φn = tan(φ)/ tan(φmax) is the normalized steering

angle. Kinematic model (3) has control input up = (v, φn)
⊤

belonging to the domain Up , [−vmax, vmax] × [−1, 1]. A

feasible path P is referred to as a collision-free solution q(t)
of (3) with q(0) = q0 and an admissible input.

The path planning problem is stated as follows:

Problem 2.3: Consider the vehicle kinematic model (3)

with up = (v, φn)
⊤ ∈ Up. Given static map Ws, an initial

configuration q0 ∈ Cfree, and a goal configuration qf ∈ Cfree,
find a feasible path P which starts at q0 and ends at qf .

Remark 2.4: Path P can be re-parameterized in terms of

s, where s(q(t)) =
∫ t

0
|v(τ)|dτ =

∫ t

0

√

ẋ2(τ) + ẏ2(τ)dτ is

the length of the arc from q0 to q(t) ∈ P . This is because

s(t) : R≥0 → R≥0 is monotonic and its inverse t(s) exists. �

Motion planning: Safely maneuvering the ego vehicle

along path P involves future trajectories of moving obstacles

and the following longitudinal dynamics of the ego vehicle

ṡ = v

v̇ = a,
(4)

which has control input u = a. Denote x = (s, v)⊺ ∈ X ,

R≥0 × [0, vmax] and Um , [−amax, amax]. The notation v,

representing the velocity of the rear wheels in (3), is abused

to depict the longitudinal velocity in the model (4).

Let sf (P) ∈ R≥0 denote the total arc-length of P , and

s ∈ [0, sf(P)] the arc-length of a point in P from the start

position q0 ∈ P . Assume the vehicle stands still at x0,xf .

The safe motion planning problem is formulated as follows.

Problem 2.5: Consider the vehicle longitudinal dynamics (4)

with a(t) ∈ Um. Given P a solution of Problem 2.3, and

dynamic map Wd, find a feasible motion s(t), ∀t ∈ [0, tf]
along P such that x(0) = (0, 0)⊤ and x(tf) = (sf (P), 0)⊤.

Remark 2.6: The solution to Problem 2.2 can be readily

constructed from P(s) and s(t). Specifically, one can re-

parameterize φ(s) as φ(t), and thus the control u = (a, φ)⊤

of the model (2) is well-defined. �

C. Planning System Architecture

The planning system architecture is illustrated by Fig. 2.

Given static map Ws, initial configuration q0, and goal con-

figuration qf , the path planner, based on the BIAGT algorithm

detailed in Section III, generates a feasible path P as a solution

of Problem 2.3; then based on P and dynamic map Wd, the

motion planner, based on the safe motion planning algorithm

detailed in Section IV, determines the longitudinal velocity

profile s(t) as a solution of Problem 2.5. Then Remark 2.6

is applied to construct the solution R(t) to Problem 2.2. An

underlying tracking controller commands the vehicle to track

R(t) faithfully.

Path Planner Motion Planner

Static Map

& Localization

Tracking Controller

& Vehicle Dynamics

Dynamic Map

R

Ws, q0, qf Wd

P

Garage Facility

x(t)

Vehicle

Localization

q(t)

Fig. 2. Planning system architecture. A path planner computes a feasible
path P based on Ws,q0, qf ; a motion planner determines the longitudinal
velocity profile s(t) along P based on Wd, and constructs reference trajectory
R(t). The tracking controller, not a part of the planning module, ensures that
the motion of the ego vehicle follows R(t) precisely.

A change in Ws, for example when static obstacles turn

into moving obstacles or vice versa, could invalidate the

original path. To circumvent the appeal for path replanning,

the following assumption is introduced.

Assumption 2.7: Static map Ws remains valid until the

parking task is accomplished.

A simple device to meet Assumption 2.7 is taking Ws as a

super-set of all possible static maps, i.e., Ws can be defined

by marking all parking lots occupied (static obstacles) except

the one corresponding to qf . This seemingly conservative

treatment is meaningful because it is a good practice to avoid

maneuvering over other unoccupied lots during parking.

Remark 2.8: The planning architecture, adopted in [30],

[45], differs from the decomposition-based approach [53]

where path planning deals with spatial constraints induced by

static obstacles, and motion planning handles temporal con-

straints induced by system dynamics. Here, motion planning

deals with dynamics as well as moving obstacles. �

III. PATH PLANNING IN STATIC ENVIRONMENTS

This section presents the BIAGT algorithm to solve Prob-

lem 2.3. It differs from A* in both node expansion and node

TABLE I
NOTATIONS

Notation Description Notation Description

C configuration space X state space
q configuration x system state
x0 initial state xf final state
q0 initial configuration qf final configuration
u control of (2) U control space of (2)
up control of (3) Up control space of (3)
x state of (4) X state space of (4)
u control of (4) Um control space of (4)
Ws static map Wd dynamic map
Ts start tree Tg goal tree
TA tree selected to grow TB tree non-selected
V node set E edge set
M motion primitives Mi MPs of ith mode
P ego vehicle path R ego vehicle motion
Po obstacle path Ro obstacle motion
tf final time Q weighting matrix
B set of conflict areas Bǫ(q) ǫ-neighbor of q

no num. of moving obstacles nB num. of CAs
d(·, ·) distance function F (q) F -value of q

g(·, ·) arrival cost h(·, ·) estimated cost-to-go

selection. Inspired by the idea that node priorities facilitate

node selection and the desire to avoid expanding all nodes,

we prioritize control actions which avoid expanding all actions

during node expansion. A node can’t be selected for expansion

unless all actions have been applied, and during expansion,

only the subset of control actions with the highest priority is

applied. The second improvement is to estimate the cost-to-go

by exchanging arrival cost information between two trees, e.g.

the arrival costs of nodes on one tree are used to estimate the

cost-to-go of nodes on the other tree.

Notation: A node is referred to as a collision-free con-

figuration qi. An edge E(qi, qj) represents a feasible path

between two nodes: qi, qj . A tree is a union of a node set V
and an edge set E , i.e., T = (V , E). A tree has a root node

T .q0 and a target node T .qf . Start tree Ts has q0 and qf as its

root and target node, respectively; goal tree Tg has qf and q0

as its root node and target node, respectively. For a finite set V ,

|V| is the number of elements. Given ǫ > 0, an ǫ-neighboring

ball of qi is defined as Bǫ(qi) , {q|d(q, qi) ≤ ǫ, ∀q ∈ C},

where d(·, ·) is a distance function, e.g. , a weighted 2-norm:

‖qi − qj‖Q = ((qi−qj)
⊤Q(qi−qj))

1/2 where Q is a positive

definite matrix with appropriate dimensions. Node q ∈ V is

assigned an F -value:

F (q) = g(T .q0, q) + h(q, T .qf), (5)

where g(T .q0, q) represents the arrival cost, or g-value, from

T .q0 to q, and h(q, T .qf) denotes the estimated cost-to-go, or

h-value, from q to T .qf . Note that F (q) is an estimated cost

of a potential path from T .q0 to T .qf which passes through q.

Tree T maintains a priority queue Q of nodes to be expanded.

All nodes in Q are ordered according to their F -values. Tree

T is dead if T .Q is empty.

A. Motion Primitive, Mode, and Priority

Let the set of admissible control input signals to the

kinematic model (3) be Up = {up : up(t) ∈ Up, q(q0, t,u) ∈
C, t ∈ [0,∞)}, where q(q0, t,u) is the solution of (3) with

initial conditions q(0) = q0 and control input u. An MP is

defined by an admissible control input u and an associated

travel distance l. Assume that the set of MPs, denoted by M,

has been pre-computed. Set M is partitioned into m subsets

M =
⋃

1≤k≤m

Mk

Mi ∩Mj = ∅, ∀1 ≤ i 6= j ≤ m,

where Mi represents the ith mode. For example, M can be

simply categorized into two subsets: MPs moving forward and

MPs moving backward. Alternatively, M can be split into

|M| subsets, each of which contains one MP. At node q, one

assigns priority pMi
q

to mode Mi. Mode Mi is tried if MPs

in Mi have been applied. The set of indices of untried modes

is denoted by Iu ⊂ I , {1, . . . ,m}. If Iu = I, then q is

fresh; if Iu = ∅, we say q is fully expanded.

Remark 3.1: Modes can be inferred from physical insights

or human experiences or more rigorously from the minimum

principle, which allows us to derive the complete set of optimal

arcs and the corresponding optimal controls as in [54]. The

optimal controls can be clustered into modes. �

Remark 3.2: Partitioning M into modes and prioritizing

modes allows mode selection, an analogy of the prioritizing

nodes to enable node selection in A*. �

B. BIAGT Algorithm

BIAGT, described by Algorithms 1-2, grows trees Ts and

Tg towards qf and q0, respectively. It succeeds if any tree

T reaches its end-game ball Bǫ(T .qf), or both trees are

connected. BIAGT contains 5 key parameters: ǫ is the radius

of the end-game ball; K is the maximum number of iterations;

µ is the threshold of distance indicating that two trees are in

proximity; δ is the radius of Bδ(q) defining the volume that

node q exclusively occupies; γ is the radius of Bγ used in

cost-to-go estimation.

In lines 2-3, both Ts and Tg are initialized, where the edge

set and the priority queue are empty. At the kth iteration,

SelectTree picks a tree TA ∈ {Ts, Tg}. If TA.Q is empty,

then BIAGT returns failure; otherwise, qbest, the node with

the lowest F -value in TA.Q, is identified (line 10). If qbest /∈
Bǫ(TA.qf), Expand conducts prioritized node expansion at

qbest (line 12); otherwise BIAGT returns success. Node qbest

is removed from TA.Q if it is fully expanded.

SelectTree: chooses tree TA according to the following

rules. Case 1 (both Ts and Tg die): it returns null. Case 2

(one tree dies): the alive tree is selected. Case 3 (both trees

are alive): if the distance between Ts and Tg is greater than

µ, i.e., d(qi, qj) > µ, ∀qi ∈ Ts.V , ∀qj ∈ Tg.V , both trees

are selected alternatively; otherwise, the tree having a lower

estimated cost-to-go is selected.

Expand: expands node qbest according to pMi
qbest

, i ∈ Iu, as

given by Algorithm 2. In line 3, GetCurrentMode determines

the mode Mc with the highest priority by solving

Mc = argmini∈Iu
pMi
qbest

.

Applying MPk ∈ Mc at qbest yields configuration qk and path

Pk from qbest to qk (line 5). If Pk is collision-free and qk is

Algorithm 1: BIAGT

1 input q0, qf ,M, ǫ,K, µ, δ, γ;
2 Ts ← ({q0}, ∅), Ts.q0 = q0, Ts.qf = qf , Ts.Q.Push(q0);
3 Tg ← ({qf}, ∅), Tg.q0 = qf , Tg.qf = q0, Tg.Q.Push(qf);
4 k ← 1, flag ← false;
5 while k ≤ K and not flag do
6 (TA, TB)← SelectTree(Ts, Tg);
7 if TA.Q.Empty then
8 break;

9 else
10 qbest = TA.Q.Pop where

F (qbest) ≤ F (q),∀q ∈ TA.Q;
11 if qbest /∈ Bǫ(TA.qf) then
12 Expand(TA, qbest, TB,M);

13 else
14 flag ← true;

15 k ← k + 1;

16 return (Ts, Tg , flag);

δ-distance away from any node in VA (lines 6), qk is added to

TA (lines 7-12). By checking whether qk is µ-distance away

from any node in VB , its F -value is updated distinctively in

line 9. Finally, pMc
qbest

is updated based on F (qk).

Algorithm 2: Expand in BIAGT

1 input TA, qbest, TB ,M;
2 (VA, EA)← TA, (VB , EB)← TB;
3 Mc ← GetCurrentMode(qbest);
4 for MPk ∈Mc, 1 ≤ k ≤ |Mc| do
5 (qk,Pk)← Simulate(qbest,MPk);
6 if minq∈VA d(qk, q) ≥ δ and CollisionFree(Pk)

then
7 if ∼ TA.ClosetoOtherTree and

minq∈VB d(qk, q) ≤ µ then
8 TA.ClosetoOtherTree← true;

9 UpdateCost(qk);
10 VA ← VA

⋃
{qk}, EA ← EA

⋃
E(qbest, qk);

11 TA.Q.Push(qk);
12 UpdateModePriority(F (qk));

13 TA ← (VA, EA);
14 return TA;

UpdateCost(qk): calculates F (qk) by checking the set:

Vnear(qk) , {q|q ∈ Bγ(qk)
⋂

VB}.

If Vnear = ∅, UpdateCost computes F (qk) in the same

manner as A*; otherwise the following cost-to-go is used

h(qk, TA.qf) = min
qi∈Vnear(qk)

{h(qk, qi) + g(TB.q0, qi)},

where g(TB.q0, qi) is accessed through TB . UpdateCost is

illustrated by Fig. 3, where the start tree is in olive, the goal

tree is in black, a circular obstacle is in gray, and the dots

represent nodes. Suppose that the expansion of qbest ∈ Ts.V
gives two admissible child nodes: qk1, qk2. The green circle

and magenta circle represent Bγ(qk1) and Bγ(qk2), respec-

tively. We have Vnear(qk1) = Vnear(qk2) = {qg} and thus

F (qk1) = g(q0, qk1) + h(qk1, qg) + g(qf , qg)

F (qk2) = g(q0, qk2) + h(qk2, qg) + g(qf , qg).

Differently, A* updates F -values as follow

FA∗(qk1) = g(q0, qk1) + h(qk1, qf)

FA∗(qk2) = g(q0, qk2) + h(qk2, qf),

where h(qk1, qf) and h(qk2, qf) do not account for obstacles.

With obstacle information being encoded in g(qf , qg), F (qk2)
and F (qk1) should give better estimate than FA∗(qk2) and

FA∗(qk1), albeit not always. Consistently, tree Ts is more

likely to grow toward Tg; in contrast, A* tends to grow Ts
by adding nodes in blue (toward the obstacle).

q0
qf

qg

qbest

qk1

qk2

γ

Fig. 3. Schematics to estimate cost-to-go of node qk1 on start tree (in olive)
by using the arrival cost of nodes on goal tree (in black). The circular obstacle
is in gray, and the dots represent nodes. The cost-to-go of qk1 is the sum of
the length of the shortest Reeds-Shepp path [52] between qk1 and qg and
the arrival cost of qg from qf .

UpdateModePriority: if qbest is fresh, pMc
qbest

(0) takes the

same value as that of its parent; otherwise, pMc
qbest

is updated

according to F (qk). Assume that applying MPs in Mc gives

Vc: a set of nodes with |Vc| ≥ 1. Deterministic rules are exem-

plified below to attain repeatable planning outcomes. Similar

to node priority, it is natural to define pMc
qbest

∈ R≥0 according

to the F -values of nodes in Vc, i.e., pMc
qbest

= minqk∈Vc
F (qk).

Another simple rule is given by

pMc
qbest

=

{

0, if minqk∈Vc
F (qk) < F (qbest)

1, otherwise.

We could also adopt the following rules

pMc
qbest

= αpMc
qbest

(0) + (1− α)
1

|Vc|

∑

qk∈Vc

F (qk),

where α > 0 is the step size to be tuned. The aforementioned

priority update rules ensure the boundedness of pMc
qbest

.

The number of modes and associated nodes requires a

careful design to balance exploration and exploitation, which

entails physical insights into the specific problem. If M is

divided into |M| modes, i.e., each mode contains one MP,

BIAGT is reduced to greedy search.

C. Completeness

BIAGT does not incur a loss of feasibility compared to

A*, i.e., it is resolution-complete under the same assumption.

Assume that A* along with M is resolution complete. Then

BIAGT is complete if all modes can be visited if necessary.

This property is related to GetCurrentMode and the bound-

edness of mode priority. Since GetCurrentMode locates the

mode with the highest priority among untried modes, any

mode can be visited as long as the priority is finite. We further

assume that K is arbitrarily large, neglecting the memory and

computation time restriction.

Proposition 3.3: BIAGT is resolution-complete.

Proof: Let us consider the completeness for a special case

of BIAGT, where only one tree is constructed. As long as the

special BIAGT is complete, then the general BIAGT, growing

two trees, is also complete.

Sufficiency is shown by contradiction, i.e., assume that A* is

complete, but BIAGT is not. That is, for some pair (q0, qf),
A* constructs tree TA∗ and gives a set of feasible paths P
connecting q0 and qf , albeit BIAGT fails to return any feasible

path. Take an arbitrary path Pt ∈ P and assume that it passes

through a set of nodes {q1, . . . , qN} in TA∗. BIAGT fails only

if at least one node qj ∈ {q1, . . . , qN} either does not belong

to TBIAGT , or it is in TBIAGT but not selected for expansion,

or not expanded with the correct mode.

Case qj ∈ TBIAGT . The F -value of qj is finite because it is

collision-free and accessible from q0 through a finite number

of nodes {q1, . . . , qj−1}. Because the K-layer reachable tree

T contains a finite number of nodes and TBIAGT ⊂ TK , there

are a finite number of nodes in TBIAGT with F -value less than

F (qj). Hence, node qj will be selected for expansion in finite

time. Also, qj will be removed from the Q queue only if all

modes are tried and qj+1 (child of qj as a result of applying

a certain primitive in M to qj) is added to TBIAGT . That is

to say: if qj ∈ TBIAGT , so does its child qj+1. By induction,

we have {qj, . . . , qn} belongs to TBIAGT , which implies the

existence of path Pt in TBIAGT . A contradiction is concluded.

Case qj 6∈ TBIAGT . In this case, it is necessary that node

qj−1 6∈ TBIAGT . This is because, if qj−1 ∈ TBIAGT , it

will be selected for expansion; all primitives will be applied

in the worst case; and qj will be generated and added to

TBIAGT . By induction, we conclude that {q0, q1, . . . , qj}
does not belong to TBIAGT . This leads to a contradiction,

because q0 ∈ TBIAGT . Hence, we have qj ∈ TBIAGT for all

1 ≤ j ≤ N , and thus tree TBIAGT contains path Pt.

Remark 3.4: BIAGT requires an overestimate of the cost-

to-go, which implies sub-optimality. With h(qk, qf) being the

lower bound of the cost-to-go, the node selection of BIAGT

is the same as in A*,

F (qbest) = g(q0, qbest) + h(qbest, qf)

≤ g(q0, qbest) + c(qbest, qk) + h(qk, qf)

= F (qk),

and Expand likely applies all MPs in M at qbest. In other

words, BIAGT necessitates an inflated heuristic cost to show

computational benefits: ρh(qk, qf) with ρ > 1. The result

is that BIAGT is sub-optimal, although in practice it might

produce a smaller tree and perform faster than A*. Interested

readers are referred to [20] for simulation validation. Note

that a similar principle has been exploited to achieve anytime

planning [17]. �

D. Discussions and Improvements

In A*, each node gets one chance to expand. This means

all MPs must be applied during node expansion. Recalling

why A* outperforms breadth-first search by prioritized node

selection, the idea of applying all MPs is apparently neither

necessary nor efficient. BIAGT weakens this limitation by

allowing mode selection: a node can be expanded multiple

times, and only the MPs in the selected mode are applied each

time. BIAGT is incentivized by the realization that vehicle

paths typically consist of several arcs, and each arc is formed

by a sequence of MPs in the same mode.

The efficacy of BIAGT depends on whether it can correctly

(I) pick the best node qbest to expand; and

(II) determine the best mode Mc to apply.

As a variant of A*, node selection of BIAGT is purely

determined by how accurate the estimated cost-to-go is. Al-

lowing Tg and Ts to exchange arrival costs facilitates early

accommodation of distant obstacles into cost-to-go estimates.

How early distant obstacles are accommodated is controlled

by parameter µ. Mode selection is dictated by how the mode

priority is inferred in UpdateModePriority. This is difficult

because the correct mode is largely influenced by the overall

layout of obstacles. The priority updating rules recursively

update the mode priority based on local obstacle information

and global cost-to-go, and work well only if the cost-to-go

captures global information.

Parameters δ and l are related to memory consumption

and completeness. For embedded platforms, it is crucial that

the nodes of the tree form a sparse distribution over Cfree.
Works [2], [48] utilize pre-defined state lattices to prevent

over-exploration (densely populated nodes), which compro-

mises path quality and results in a large array to mark the state

lattice. BIAGT fulfills the sparsity requirement by rejecting

qk within δ-distance from the same tree. The distance check

results in less memory but extra computation, which is non-

negligible for a big tree. There is no clear-cut way to determine

what value δ should take, and thus, tuning δ may involve trial

and error. Roughly speaking, δ defines the resolution used to

partition Cfree and is related to resolution-completeness. The

smaller δ is, the larger the tree, whereas a larger δ results in a

smaller tree but at a higher probability of losing completeness.

Impacts of l are similar to δ. A fixed δ, implying uniform

node density, potentially wastes computation and memory

resources. In fact, when the vehicle moves in a relatively

open space, feasibility is barely affected by trying aggressive

MPs and actively rejecting node candidates, and thus, one

can afford to use a large δ and long MPs; in a tight space,

feasibility is likely at risk due to aggressive rejection, and

thus a smaller δ and shorter MPs are appropriate. It is highly

desirable to adjust parameters δ and l during tree construction

to balance computation efficiency, memory, and completeness.

The details about how to adjust δ and l are omitted because

it is not the focus of this work.

IV. SAFE MOTION PLANNING IN DYNAMIC

ENVIRONMENTS

Path planning assumes static environments to lower the

computational complexity. This section presents a hierarchi-

cal motion planner to deal with dynamic environments with

safety guarantees at a reasonable computational burden. At the

scheduling level, the results of [46] are employed with slight

modifications for parking. Based on the scheduling decision,

analytical formulae are applied to generate vehicle trajectories.

A. Conflict Area

We recite concepts previously used in [46] for the sake

of completeness. To characterize potential collisions with

moving obstacles, the CA (where the paths of vehicle/obstacles

intersect or overlap) is introduced below.

Definition 4.1: Given the path of the ego vehicle P and

the occupancy set defined by the length and width of the ego

vehicle S, and those of moving vehicles Po and So for o =
1, . . . , no, where no is the number of all moving obstacles,

the conflict area B ⊂ [0, sf (P)] is defined as

B := {s ∈ [0, sf(P)] : ∃o ∈ {1, . . . , no}, so ∈ [0, sf (Po)]

such that (P(s)⊕ S) ∩ (Po(so)⊕ So) 6= ∅}, (6)

where ⊕ is the Minkowski sum.

If P coincides with the paths of obstacles more than once,

B may not be a connected set and can be written as the union

of connected sets. More precisely, we let

B =

nB
⋃

i=1

Bi,

where Bi is a connected set in R. We say that there are nB

conflict areas and refer to each conflict area (by default along

the vehicle path) as CAi. For notional simplicity, let

inf Bi = ai, supBi = bi,

and say Bi has a range [ai, bi]. CAs are illustrated in Fig. 4.

One can define CAs for each vehicle based on the paths

and sizes of vehicles and obstacles. Notably, one segment of

the vehicle path could intersect with multiple obstacle paths,

and we should be careful to ensure any point on the vehicle

path belongs to only one CA.

S
e
n
s
o
r

C
o
m
m

G
M
S

S
e
n
s
o
r

C
o
m
m

S
e
n
s
o
r

C
o
m
m

q0

Po

P

Fig. 4. Red segments are the CAs by Definition 4.1. Ego vehicle (solid
black box) plans a path P in solid line connecting q0 and qf , while an
obstacle (solid green box) executes a path Po in dash green. This results in
two disconnected CAs, represented by red solid lines.

B. Reformulation of Problem 2.5

Safe motion planning amounts to avoiding the overlap with

moving obstacles inside the same CAi at any time, which can

be formulated as a temporal constraint on an input signal u ∈
Um. Here, Um is defined as the set of admissible control input

signals to the longitudinal dynamics (4), that is, Um , {u :
u(t) ∈ Um, x(x0, t,u) ∈ X, t ∈ [0,∞)}, where x(x0, t,u)
is a solution of (4) with control input u.

We formulate such a temporal collision-avoidance constraint

in terms of the time intervals during which moving obstacles

and the ego vehicle occupy the same CAi. Based on the

motion trajectories of all moving obstacles, one computes time

intervals Io,Bi
⊂ R≥0 during which obstacle o occupies CAi

by

Io,Bi
:= {t ∈ R≥0 : Ro(t) ∈ Bi} (7)

where Ro is the trajectory of obstacle o. Also, for the ego

vehicle and for each CAi, define tBi
⊂ R≥0 as a time interval

during which the ego vehicle is inside the CAi, that is, {t :
s(t,u) ∈ Bi}. We can simply use tai

to denote the time when

the vehicle enters Bi. Then, to avoid collisions inside each

CAi, we should impose

tBi
∩ Io,Bi

= ∅ for all o. (8)

Problem 2.5 is recast to the following scheduling problem:

Problem 4.2 (SP): Given a path P and a dynamic map Wd

(which gives the value of Io,Bi
for 1 ≤ i ≤ nB),

min
t1:nB

f(t1:nB
) (9a)

subject to tmin(ai, t1:i−1) ≤ tai
≤ tmax(ai, t1:i−1) (9b)

tBi
∩ Io,Bi

= ∅ for all o, i, (9c)

where t1:nB
= (ta1

, . . . , tanB
) and

tmin(ai, t1:i−1) := min
u∈Um

{t : s(t,u) = ai

with constraint s(tai−1
,u) = ai−1} (10a)

tmax(ai, t1:i−1) := max
u∈Um

{t : s(t,u) = ai

with constraint s(tai−1
,u) = ai−1}. (10b)

By definition, tmin(ai, t1:i−1) and tmax(ai, t1:i−1) are the

soonest and latest, respectively, time when the vehicle can

enter CAi according to the dynamics (4), given that it has

entered CAi−1 at a given time tai−1
.

In short, Problem 4.2 solves for a set of times when the

vehicle enters each CA. It is a special form of scheduling

problem where only one job is scheduled over nB machines

(i.e., CAs), where each machine should be kept idle during

specific time intervals Io,Bi
. In this paper, we use the approx-

imate solution developed in [46]. The idea is to restrict the

problem such that it consists of one decision variable ta1
and

several CA-related constraints, which are expressed as (linear)

functions of ta1
. The approximate problem can be formulated

as MILP. Readers are referred to [46] for more details.

Given the approximate solution t∗1:nB
= (t∗a1

, . . . , t∗anB

), we

can compute an input signal u ∈ Um, such that

s(t∗ai
,u) = ai, for all i = 1, . . . , nB.

To find such an input signal u, we analytically solve the above

equations subject to velocity and acceleration constraints. For

example, the conventional trapezoidal velocity profile can

be readily generated based on arc length, initial and final

velocities, and travel time.

time

position

CA1

CA2

Result of Problem 4.2

Result of SP[0,b1]

t
∗

a1
t
∗

a2

Fig. 5. Decoupling example when a2 − b1 ≥ ℓ. With f(t1:n2
) = ta1

+
ta2

, the solution of SP[0,b1] ensures the existence of a feasible solution of

Problem 4.2; that is, there exists a dotted trajectory where (t∗a1
, t∗a2

) is a
feasible solution of Problem 4.2. However, the solution of SP[0,b1] does not
guarantee optimality because its resulting trajectory may not be part of a
trajectory resulting from the solution of Problem 4.2. Proposition 4.4 provides
a condition that guarantees the optimality.

C. Decomposed CA

Ranges of CAs affect the efficiency of the approximate

solution. We categorize CAs into two types: intersection and

overlap. Intersection type means that paths of two vehicles

cross with each other, and the CA typically spans over a

small region. Overlap type characterizes the scenario shown in

Fig. 1 where infrastructure admits one-way traffic. All vehicles

move in the same direction and likely have paths overlapping

with each other. Take two outgoing vehicles as an example,

where vehicle B is behind vehicle A. Hence, based on spatial

constraint, the corresponding CA covers the entire path of

vehicle A. With this CA definition, solving Problem 4.2 for

vehicle B ends up with the solution that vehicle B cannot start

moving until vehicle A drives out of the garage. This is not

acceptable because of its remarkably low throughput.

We propose to decompose the overlap CA into a series of

CAs which are exclusive and possess the nature of accounting

for the temporal constraint. The downside of this treatment

is the increase in the number of decision variables and the

resulting increase in computational complexity of Problem

4.2. Note that the resulting approximate problem requires

solving for one decision variable ta1
, and thus the increase

of computational complexity is less severe than Problem 4.2.

D. Decoupled Approach

As the number of CAs grows, the approximate algorithm

tends to be more restrictive because it adjusts only ta1
to avoid

collision in the subsequent CAs. Moreover, its computation

time increases exponentially. To address these issues, we

propose to decouple the problem into subproblems and solve

them sequentially.

Let SP[0,s0] be Problem 4.2 restricted to the CAs that are

located before s0, i.e., bi ≤ s0. This effectively changes the

range of i to 1, . . . , ι if bι ≤ s0 is the closest CA to s0, and

therefore the decision variable becomes t1:ι = (ta1
, . . . , taι

).
We can solve the problem SP[0,bι], instead of Problem 4.2,

ignoring the subsequent CAs, in the following cases.

(I) Suppose that two consecutive CAs ι and ι+1 are more

than distance ℓ apart (i.e., aι+1−bι ≥ ℓ), and ℓ satisfies

ℓ ≥ minimum distance required to stop for any velocity

= min
t
{s(t)− s(0) : v(t) = 0, ∀|v(0)| ≤ vmax}.

The condition is not too restrictive because the maxi-

mum velocity is low during parking maneuvers.

(II) Suppose the path consists of a position P(sr) where the

vehicle reverses its direction, and sr is not an entry of

any Bi and bι ≤ sr is the closest conflict area.

One common and interesting feature of these two cases is that

tmax(aι+1, t1:ι) = ∞ for any feasible t1:ι.

The decoupled approach preserves feasibility and, further-

more, optimality under some conditions.

Proposition 4.3: Let t∗1:ι be the solution of SP[0,bι]. Then,

there exists t∗ι+1:nB
such that the concatenated vector t∗1:nB

is

feasible for Problem 4.2.

Proof: (Sketch) Problem 4.2 has the constraints of

SP[0,bι], the constraints of SP[bι,sf], and

tmin(aι+1, t1:ι) ≤ taι+1
≤ tmax(aι+1, t1:ι), (11)

where t1:ι is any feasible solution of SP[0,bι]. Because

tmax(aι+1, t1:ι) = ∞ by definition of ι, and Io,Bi
is finite,

there exists t∗ι+1:nB
satisfying the constraints of SP[bι,sf]

and (11).

The example illustrated in Fig. 5 shows that the optimality

cannot be guaranteed by the decoupled approach; think about

the decomposition of SP[0,b1] and SP[b1,sf] in the example by

assuming that tmax(a2, t1) = ∞ for any t1. However, under

some conditions, optimality can be guaranteed.

Proposition 4.4: If max v(t∗ι) is equal to vmax, then there

exists t∗ι+1:nB
such that t∗1:nB

is optimal for Problem 4.2.

Proof: (Sketch) Suppose t∗ι+1:nB
is the optimal solution

for SP[bι,sf] with constraint (11), which exists by Proposi-

tion 4.3. The condition max v(t∗ι) = vmax implies that for

any feasible solution t1:ι of SP[0,bι],

tmin(aι+1, t
∗
1:ι) ≤ tmin(aι+1, t1:ι).

So the constraint (11) is no more restrictive than the one in

SP[0,sf], and thus, t∗1:nB
is the optimal solution.

V. CASE STUDIES

In the simulation, the proposed solution is applied

to Problem 2.2 for a garage as shown in Fig. 1.

The garage contains four rows of perpendicular parking

lots, {A1, . . . , A10, B1, . . . , B10, C1, . . . , C10, D1, . . . , D14}
and four parallel parking lots {E1, . . . , E4}, all being ab-

stracted as rectangles. Each parking lot has a dimension of

2.5m × 6m, the lane width is 6m, and the garage size is

40m×36m. All vehicles and moving obstacles have a length

of 4.655m, a width of 1.810m, and a minimum turning radius

of 4.132m. The following two scenarios are considered:

(I) Case 1: one obstacle vehicle drives out of A5, followed

by the ego vehicle driving into E2; The obstacle moves

at a speed 1 + vn(t)m/sec with vn(t) uniformly dis-

tributed over [0, 0.01].
(II) Case 2: two obstacle vehicles leave A5 and D10, re-

spectively, followed by the ego vehicle driving out of

E2. Obstacle 1 moves at a speed 1 + vn1
(t)m/sec and

obstacle 2 moves at a speed 0.5 + vn2
(t)m/sec with

vn1
(t), vn2

(t) uniformly distributed over [0, 0.01].

The ego vehicle has vmax = 1.5m/sec, and u1 ∈
[−1, 1]m/sec2. The configurations of the entrance, the exit,

A5, E2, and D10 are given as follows

qentr = [9.5, 1.5, π/2]⊤

qexit = [3, 4, 3π/2]⊤

qA5
= [23.75, 1.5, π/2]⊤

qE2
= [38.75, 13.5, π/2]⊤

qD10
= [26.25, 34.5, 3π/2]⊤.

All simulations are conducted in Matlab®2020b, where the

path planning Algs. 1-2 can be implemented in Matlab without

using any toolbox, and the safe motion planning algorithms

are coded based on Matlab Optimization Toolbox. Please note

extensive simulation validation for path planning has been

conducted in [20] to verify computational efficiency against

classical A* algorithm, and thus omitted here.

For both cases, we compare three algorithms: regular, de-

composed, and decoupled, where regular solves Problem 4.2

without sub-division of CAs, decomposed solves Problem 4.2

with sub-division of CAs, and decoupled solves a sequence

of sub-motion planning problems as in Proposition 4.3. All

three are bench-marked against a baseline: minimum time op-

timal control method (MTOC), which generates time-optimal

motion without considering moving obstacles. We assess algo-

rithms in terms of task time, energy consumption, and compu-

tation time, where task time and energy consumption indicate

the time and energy taken for the vehicle to accomplish the

task, respectively.

Tables II-III summarize the comparison results, where MILP

time indicates the time taken to solve one instance of the

MILP as a result of Problem 4.2 or SP[0,s0], and MILP calls

counts the total number of MILPs solved during the task.

It is noteworthy that, ideally, the MILP can be called once

for all three algorithms. However, we keep solving the MILP

during the motion execution for the flexibility to adjust the

schedule, aiming to address stochastic uncertainties in obstacle

velocities. Also, numerical values in both tables are normalized

based on the regular algorithm result. Particularly, in Table

III, the energy consumption for the regular algorithm without

considering idling is 1, and all others are normalized against

it. It is worth mentioning that for both cases, it takes less

than 0.02sec to solve one MILP instance on a computer

with Intel® i7-4790K and 32GB RAM, and thus, the safe

motion planning can run in real-time if the number of moving

obstacles is small.

From both tables, MTOC outperforms the other three algo-

rithms, achieving the shortest task time, lowest computational

complexity, and minimal energy consumption. This is expected

because MTOC, ignoring the moving obstacles, returns a

motion plan that does not involve waiting. It involves a purely

analytical formula for motion planning, and the MILP time

and calls are zero.

From Table II, both the decomposed and decoupled algo-

rithms shorten task time, compared to the regular, but the

percentage of improvement depends on the task. MILP times

are about the same for Case 1, whereas the decomposed takes

longer to solve for Case 2. It is understood that for Case 1,

TABLE II
COMPARISON ON TIME DIMENSION

Alg. Case Task time MILP time MILP calls

MTOC 1 0.6770 0 0

regular 1 1 1 1

decomposed 1 0.7179 0.9749 1

decoupled 1 0.7160 0.9838 1.2624

MTOC 2 0.2493 0 0

regular 2 1 1 1

decomposed 2 0.2670 1.1977 0.1734

decoupled 2 0.2606 1.0047 0.1753

the regular, decomposed, and decoupled algorithms involve

one CA, four CAs, and two CAs, respectively, which is not

significantly different; for Case 2, the three algorithms use two

CAs, 17 CAs, and two CAs respectively, and the decomposed

algorithm has to deal with many more constraints. Regarding

MILP calls, the comparison conveys a mixed message because

it depends on the task, which becomes clear by examining

the figures below. The main takeaway is that the decomposed

algorithm lands the least calls.

For the energy consumption results in Table III, column

Ignoring idle and column Including idle are obtained by

calculating the following integral

E(u) =

∫ T

0

max(c2, a2)dt, (12)

with c = 0 and c = 0.2, respectively. Here, c denotes

the power during idle, a is the acceleration of the vehicle,

and T is the task time. Among these three algorithms, the

decomposed results in the most efficient task execution for

both cases. Energy benefit brought by the decoupled algo-

rithm varies over cases. If one ignores energy consumption

during idle, the following motion by the regular algorithm is

more efficient than the decoupled because the latter involves

more stop-and-go during the task. The consideration of idling

energy consumption could change the whole story because

the decoupled solution may finish tasks earlier, idle less, and

reduce the incurred energy consumption. Whether the energy

savings due to reduced idle time outweigh the penalty incurred

by extra braking is task-dependent. We remark that the energy

consumption model in the evaluation is overly simplified for

illustrative purposes.

TABLE III
COMPARISON ON ENERGY CONSUMPTION DIMENSION

Alg. Case Ignoring idle Including idle

MTOC 1 0.8611 0.9503

regular 1 1 1.1379

decomposed 1 0.8827 0.9719

decoupled 1 1.1108 1.1946

MTOC 2 1.0962 1.2467

regular 2 1 1.7393

decomposed 2 0.9560 1.1140

decoupled 2 1.3315 1.4781

Comprehensive results are reported in Figs. 6-9 for Case 1,

and in Figs. 10-12 for Case 2, respectively. All figures,

unless explicitly specified, adopt the following color code:

solid black, dash blue, and dash green represent the regular,

decomposed, and decoupled algorithms, respectively; blue dots

denote the beginnings and ends of CAs along the vehicle

path; black dots denote the beginnings and ends of CAs along

obstacle paths. Fig. 6 defines the garage layout, the paths, and

CAs for both regular and decomposed algorithms. The layout

for the decoupled algorithm is similar to Fig.6(b), except that

it involves only the first two CAs at the beginning of the task

and thus is omitted. Fig. 7 shows that the decoupled solution

leads to the decomposed. This is not always true though,

and we have witnessed in simulations that the decomposed

motion does catch up. This discrepancy is largely due to the

stochastic nature of the obstacles’ speed. Nevertheless, a con-

sistent observation is that the task time difference between the

decomposed and decoupled solutions is subtle, and the former

always lags in the beginning. This is anticipated because the

decoupled algorithm determines the schedule based on a subset

of CAs.

Examining Figs. 7-8 offers a clear picture of the schedules

and movements of the vehicle. The regular algorithm schedules

the vehicle to enter the large CA at [14.3,41]m after the

obstacle clears it; the decomposed schedules the vehicle into

CA1 when it is safe to finish the rest of the path without further

waiting, i.e., the vehicle is guaranteed to clear all remaining

CAs with the MTOC planner safely; and the decoupled

schedules the vehicle into CA1 when it can safely clear the

foreseeable CAs. The number of foreseeable CAs for a given

vehicle state is tunable. In simulation, the foreseeable CAs are

defined as the set comprised of two CAs ahead and behind the

vehicle.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Vehicle 1

Obstacle 1

(a) Regular

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Vehicle 1

Obstacle 1

(b) Decomposed

Fig. 6. Case 1: paths and CAs. Red solid: vehicle path; green dash: obstacle
path. (a) A large CA along the vehicle path ranges from 14.3m to 41m,
abbreviated as [14.3,41]m, indicating the beginning and end of the CA relative
to the vehicle’s initial position. (b) The large CA, ranging [14.3,41]m, is
decomposed into four CAs: CA1-[14.3, 21.2]m, CA2-[21.2, 28.4]m, CA3-
[28.4,35.7]m, and CA4-[35.7,41]m along the vehicle path. The four CAi, 1 ≤

i ≤ 4 correspond to four CAs along the obstacle path, CAO
1 -[2.4,8.7]m, CAO

2 -

[8.7,15.2]m, CAO
3 -[15.2,21.6]m, CAO

4 -[21.6,26.4]m, where numerical values

are relative to obstacle’s initial position. CAO
i , 1 ≤ i ≤ 4 are not shown to

avoid confusion.

Fig. 9 visualizes the obstacle and the vehicle positions

at moments when the vehicle is about to enter a CA. The

horizontal bar on the top shows CAO
i , 1 ≤ i ≤ 4, and the

lower bar plots CAi, 1 ≤ i ≤ 4. The black, blue, yellow,

and red pentagrams show the beginning of the 1st, 2nd, 3rd,

and 4th CA, respectively. The black, blue, yellow, and red dots

denote obstacle positions when the vehicle is at the pentagram

in black, blue, yellow, and red, respectively. Apparently, no

obstacle and vehicle share the same CA at any time. The

0 10 20 30 40 50 60
0

10

20

30

40

50

Fig. 7. Case 1: vehicle position trajectories.

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45
-1

-0.5

0

0.5

1

Fig. 8. Case 1: vehicle velocity & acceleration profiles along its path. The
vehicle slows down before entering CA1. Three algorithms give different
schedules for the vehicle to pass 14.3m. The regular algorithm is the most
conservative because the vehicle has to wait for the obstacle to clear the large
CA [14.3, 41]m; the decomposed is the second most conservative, where the
vehicle can pass 14.3m if it is safe to execute the rest path without further
waiting; and the decoupled is the least conservative, where the vehicle is
allowed to pass 14.3m as long as no collision happens in the two CAs ahead.
Hence, velocity in solid black slows down most, and green dashes barely
slow down before CA1. Afterward, velocity profiles for both regular and
decomposed algorithms do not contain extra waiting before any CA, whereas
the velocity from the decoupled algorithm goes to zero in the middle of CA2,
to avoid entering CA3 before the obstacle clears.

vehicle slows down after entering CA2 to avoid entering CA3

before the obstacle clears CAO
3 .

0 10 20 30 40 50
0

0.1

0.2

0.3

Fig. 9. Decoupled algorithm for Case 1: positions of vehicle and obstacles
when the former is about passing a CA.

Case 2 involves 17 CAs for the decomposed and decoupled

algorithms, which makes it difficult to make a legible visual

presentation. Hence, Fig. 10 only plots the two CAs used

in the regular algorithm. Temporal position trajectories are

depicted in Fig. 11, where two observations can be made:

first, consistent with Table II and Case 1, the regular algorithm

ends up with a long waiting time before entering CA2, and thus

finishes the task late; second, the decoupled algorithm initially

leads the decomposed, but slows down at t ≈ 40sec and thus

is overtaken by the latter. Fig. 12 elucidates how the vehicle

moves along the path according to different algorithms. Since

the vehicle starts with a parallel parking maneuver involving

several cusps, the velocity profiles look messy before CA2.

Profiles in the first 10m are magnified and shown in magenta

boxes. By looking at the upper magenta box, we noticed

similar patterns observed in Case 1, i.e., the regular algorithm

issues a complete stop before CA2, the decoupled does not

wait at all, and the decomposed adopts a slow acceleration

to avoid entering CA2 too early. Also, the decoupled solu-

tion waits at x ≈ 50m, right after entering CA5, ranging

[49.2,56.2]m, to stay outside of CA6 before the first obstacle

clears it. We remark that the vehicle does not need to come to

a full stop to avoid entering CA6 while the first obstacle still

possesses it. Sporadic spikes in acceleration plots are induced

by time discretization during motion generation.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Vehicle 1

Obstacle 1

Obstacle 2

Fig. 10. Case 2: paths and CAs. Red solid: vehicle path; green dash: the first
obstacle path; blue dash: the second obstacle path. In the regular algorithm,
the vehicle has a large overlap CA1 with the first obstacle, ranging [20.6,
65.7]m, and another CA2 with the second obstacle, ranging [2.8,65.7]m.

0 50 100 150 200 250
0

20

40

60

Fig. 11. Case 2: vehicle position trajectories.

0 10 20 30 40 50 60 70

0

0.5

1

1.5

0 10 20 30 40 50 60 70

-1

-0.5

0

0.5

1

0 5 10
0

0.5

1

1.5

0 5 10
-1

0

1

Fig. 12. Case 2: vehicle velocity & acceleration profiles along its path.

VI. CONCLUSIONS

This work presented a hierarchical planning method to fulfill

fast planning for automated parking in dynamic environments.

BIAGT, a variant of A*, was developed to solve path planning

in static environments and is adapted for efficient, safe motion

planning in dynamic environments by adopting the scheduling

framework [46]. Major differences between BIAGT and A*

are the construction of estimated cost-to-go and the newly

added mode selection step. Analysis showed that BIAGT could

lead to a smaller tree and lighter computation load, albeit

losing the optimality guarantee. This is because the mode

selection takes effect only if the cost-to-go is overestimated.

A basic implementation of the scheduling framework [46] for

parking scenarios could lead to unsatisfactory throughput and

computation complexity, where the low throughput is caused

by overlapping CAs, and computation complexity corresponds

to the number of CAs. Decomposed and decoupled algorithms

were developed to address these two limitations. The simula-

tion confirmed the effectiveness of the proposed architecture

and algorithms.

REFERENCES

[1] A. Stentz, “Optimal and efficient path planning for unknown and
dynamic environments,” Robotics Institute, Carnegie Mellon University,
Tech. Rep. CMU-RI-TR-93-20, 1993.

[2] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for
autonomous vehicles in unknown semi-structured environments,” Int. J.

Robot Res., vol. 29, no. 5, pp. 485–501, 2010.
[3] S. M. LaValle, Planning Algorithms. Cambridge, UK: Cambridge

University Press, 2006.
[4] J. T. Betts, “Survey of numerical methods for trajectory optimization,”

J. Guid. Control Dynam., vol. 21, no. 2, pp. 193–207, Mar.-Apr. 1998.
[5] G. Elnagar, M. A. Kazemi, and M. Razzaghi, “The pseudospectral

legendre method for discretizing optimal control problems,” IEEE Trans.

Automat. Control, vol. 40, no. 10, pp. 1793–1796, Oct. 1995.
[6] Y. Zhao, Y. Wang, M.-C. Zhou, and J. Wu, “Energy-optimal collision-

free motion planning for multiaxis motion systems: An alternating
quadratic programming approach,” IEEE Trans. Autom. Sci. Eng.,
vol. 16, no. 1, pp. 327–338, Jan. 2019.

[7] A. Richards, T. Schouwenaars, J. P. How, and E. Feron, “Spacecraft
trajectory planning with avoidance constraints using mixed-integer linear
programming,” J. Guid. Control Dynam., vol. 25, no. 4, pp. 755–763,
July-August 2002.

[8] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
Proc. 2012 ICRA, 2012, pp. 477 – 483.

[9] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robot Res., vol. 5, no. 1, pp. 417–431, 1986.

[10] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, Aug.
1996.

[11] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot Res., vol. 20, no. 5, pp. 378–400, 2001.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot Res., vol. 30, no. 7, pp. 846–894, 2011.

[13] N. A. Melchior and R. Simmons, “Particle RRT for path planning with
uncertainty,” in Proc. 2007 ICRA, 2007, pp. 1617–1624.

[14] D. Ferguson and A. Stentz, “Anytime RRTs,” in Proc. 2006 IROS, 2006,
pp. 5369–5375.

[15] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in Proc. 2006 ICRA, 2006,
pp. 2366–2371.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
[17] M. Likhachev, G. Gordon, and S. Thrun, ARA*: Anytime A* with

probable bounds on sub-optimality. MIT Press, 2003, ch. Advances in
Neural Information Processing Systems.

[18] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,”
Artificial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[19] S. Koenig and M. Likhachev, “D* lite,” AAAI, vol. 15, 2002.
[20] Y. Wang, “Improved A-search guided tree construction for kinodynamic

planning,” in Proc. 2019 ICRA, 2019, pp. 5530–5536.
[21] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock, “Randomized kino-

dynamic motion planning with moving obstacles,” Int. J. Robot Res.,
vol. 21, no. 3, pp. 233–255, 2002.

[22] B. R. Donald and P. Xavier, “Provably good approximation algorithms
for optimal kinodynamic planning: robots with decoupled dynamics
bounds,” Algorithmica, vol. 14, pp. 443–479, 1995.

[23] H. M. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,

Algorithms, and Implementation. Cambridge, MA: MIT Press, 2005.
[24] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,

“Anytime Dynamic A*: An anytime, replanning algorithm,” in Proc.

2005 ICAPS, 2005, pp. 262–271.
[25] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning

for agile autonomous vehicles,” Journal of Guidance, Control, and

Dynamics, vol. 25, no. 1, pp. 116–129, 2002.
[26] K. Fujimura, “Time-minimum routes in time-dependent networks,” IEEE

Trans. Robot. Automat., vol. 11, no. 3, pp. 343–351, 1995.
[27] T. Fraichard, “Trajectory planning in a dynamic workspace: A state-time

space approach,” Advanced Robotics, vol. 13, no. 1, pp. 75–94, 1998.
[28] J. P. van den Berg and M. H. Overmars, “Roadmap-based motion

planning in dynamic environments,” IEEE Trans. Robot., vol. 21, no. 5,
pp. 885–897, 2005.

[29] M. Phillips and M. Likhachev, “SIPP: Safe interval path planning for
dynamic environments,” in Proc. 2011 ICRA, 2011, pp. 5628–5635.

[30] P. Leven and S. Hutchinson, “A framework for real-time path planning
in changing environments,” Int. J. Robot Res., vol. 21, no. 12, pp. 999–
1030, 2002.

[31] M. Kallman and M. Mataric, “Motion planning using dynamic
roadmaps,” in Proc. 2004 ICRA, 2004, pp. 4399–4404.

[32] L. Jaillet and T. Siméon, “Motion planning using dynamic roadmaps,”
in Proc. 2004 IROS, 2004, pp. 1606–1611.

[33] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. 2005 IROS, 2005, pp. 2210–2215.

[34] T. Mercy, R. V. Parys, and G. Pipeleers, “Spline-based motion planning
for autonomous guided vehicles in a dynamic environment,” IEEE Trans.

Contr. Syst. Technol., vol. 26, no. 6, pp. 2182–2189, Nov. 2018.
[35] I. E. Paromtchik and C. Laugier, “Motion generation and control for

parking an autonomous vehicle,” in Proc. 1996 ICRA, Apr. 1996, pp.
3117–3122.

[36] H. Vorobieva, S. Glaser, N. Minoiu-Enache, and S. Mammar, “Automatic
parallel parking in tiny spots: path planning and control,” IEEE Trans.

Intell. Transp. Syst., vol. 16, no. 1, pp. 396–410, 2015.
[37] K. Kondak and G. Hommel, “Computation of time optimal movements

for autonomous parking of non-holonomic mobile platforms,” in Proc.

2001 ICRA, Seoul, Korea, May. 2001, pp. 2698–2702.
[38] G. Lini, A. Piazzi, and L. Consolini, “Multi-optimization of η3 for

autonomous parking,” in Proc. 50th CDC, 2011, pp. 6367–6372.
[39] B. Li and Z. Shao, “A unified motion lanning method for parking an

autonomous vehicle in the presence of irregularly placed obstacles,”
Knowledge-Based Systems, vol. 86, pp. 11–20, 2015.

[40] B. Li, Y. Zhang, and Z. Shao, “Spatio-temporal decomposition: a
knowledge-based initialization strategy for parallel parking motion opti-
mization,” Knowledge-Based Systems, vol. 107, pp. 179–196, Sept. 2016.

[41] L. Han, Q. H. Do, and S. Mita, “Unified path planner for parking an
autonomous vehicle based on RRT,” in Proc. 2011 ICRA, 2011, pp.
5622–5627.

[42] Y. Wang, D. K. Jha, and Y. Akemi, “A two-stage RRT path planner for
automated parking,” in Proc. of IEEE Conf. on Automation Science and

Engineering, 2017, pp. 496–502.
[43] C. Chen, M. Rickert, and A. Knoll, “Path planning with orientation-

aware space exploration guided heuristic search for autonomous parking
and maneuvering,” in 2015 IEEE Intelligent Vehicles Symposium, Jun.
2015, pp. 1148–1153.

[44] S. Dai and Y. Wang, “Long-horizon motion planning for autonomous
vehicle parking incorporating incomplete map information,” in Proc.

2021 ICRA, 2021, pp. 8135–8142.
[45] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The

path-velocity decomposition,” Int. J. Robot Res., vol. 5, no. 3, pp. 72–89,
1986.

[46] H. Ahn and D. Del Vecchio, “Safety verification and control for collision
avoidance at road intersections,” IEEE Trans. Automat. Control, vol. 63,
no. 3, pp. 630–642, Mar. 2018.

[47] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic for
rapidly exploring state space,” in Proc. 2010 ICRA, 2010, pp. 5021–
5028.

[48] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” Int. J. Robot Res., vol. 28, no. 8,
pp. 933–945, 2009.

[49] P. Fiorini and Z. Shiller, “Motion planning in dynamic environment using
velocity obstacles,” Int. J. Robot Res., vol. 17, no. 7, pp. 760–772, 1998.

[50] B. Müller, J. Deutscher, and S. Grodde, “Continuous curvature trajectory
design and feedforward control for parking,” IEEE Trans. Contr. Syst.

Technol., vol. 15, no. 3, pp. 541–553, 2007.

[51] J.-P. Laumond, S. Sekhavat, and F. Lamiraux, Guidelines in nonholo-

nomic motion planning for mobile robots. Springer, 1998.
[52] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both

forwards and backwards,” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[53] K. G. Shin and N. D. Mckay, “Minimum-time control of robotic
manipulators with geometric path constraints,” IEEE Trans. Automat.

Control, vol. AC-30, no. 6, pp. 531–541, Jun. 1985.
[54] Y. Wang, K. Ueda, and S. A. Bortoff, “A Hamiltonian approach

to compute an energy efficient trajectory for a servomotor system,”
Automatica, vol. 49, no. 12, pp. 3550–3561, Dec. 2013.

	Title Page
	page 2

	tcst22_Planning_for_automated_parking_in_dynamic_environments_R2.dvi
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13

