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Abstract
The operation of autonomous systems is inherently constrained by their surrounding envi-
ronment, which is often time-varying and unknown a priori, necessitating perception using
sensors. Hence, control strategies for autonomous systems must take into account the un-
certainty of the perceived environment in making decisions, while information acquired by
sensors often depends on how the system is operated, e.g., where the sensors are pointed at,
or what and how much sensor information is processed. We introduce a perception-aware
chance-constrained model predictive control (PAC-MPC) strategy that accounts for the un-
certainty of the perceived environment, as well as the dependence of the perception quality
on the control actions. The system and the environment are coupled by chance constraints
due to the uncertainty in the environment estimate, which depends on control actions. We
establish the constraint satisfaction and stability properties of PAC-MPC through appropri-
ate design of the cost function and terminal set, and propose a constructive design procedure
for the case of linear dynamics.

Automatica 2023

c© 2023L̇icensed under the Creative Commons BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-
nd/4.0/.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Perception-AwareModelPredictiveControl

forConstrainedControl inUnknownEnvironments

Angelo D. Bonzanini a, Ali Mesbah a, Stefano Di Cairano b

aUniversity of California, Berkeley, CA 94720

bCorresponding Author. Mitsubishi Electric Research Laboratories, Cambridge, MA 02139.

Abstract

The operation of autonomous systems is inherently constrained by their surrounding environment, which is often time-varying
and unknown a priori, necessitating perception using sensors. Hence, control strategies for autonomous systems must take
into account the uncertainty of the perceived environment in making decisions, while information acquired by sensors often
depends on how the system is operated, e.g., where the sensors are pointed at, or what and how much sensor information is
processed. We introduce a perception-aware chance-constrained model predictive control (PAC-MPC) strategy that accounts
for the uncertainty of the perceived environment, as well as the dependence of the perception quality on the control actions.
The system and the environment are coupled by chance constraints due to the uncertainty in the environment estimate, which
depends on control actions. We establish the constraint satisfaction and stability properties of PAC-MPC through appropriate
design of the cost function and terminal set, and propose a constructive design procedure for the case of linear dynamics.
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1 Introduction

Autonomous systems, such as mobile robots, automated
vehicles and drones, admit motion models that are gen-
erally accurate, especially when regulated by low-level
controllers. However, the environment where such sys-
tems operate is often not known a priori and may change
dynamically, e.g., due to the location of other vehicles on
the road, of workers on a factory floor, of obstructions to
flight path, or of markings delimiting the workspace. The
elements of the environment may not affect the system
motion dynamics, but rather impose constraints on the
permissible motions and actions, such as containment
on the workspace, collision avoidance with vehicles or
workers, and safe flyby around obstructions. The envi-
ronment information is obtained from perception using
data provided by sensors, e.g., lidar, radar and cam-
eras [6]. Since the perception from sensors is imperfect,
the constraints relating system and environment are un-
certain and hence the perception performance in reduc-
ing the environment uncertainty affects the control de-
cisions [1, 11,17,18].

Email addresses: adbonzanini@berkeley.edu (Angelo D.
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dicairano@ieee.org (Stefano Di Cairano).

While perception is often assumed to be independent
from control actions, that may overlook the actual capa-
bilities of advanced sensors. For instance, cameras and
lidars have a limited field-of-view and range, and are
subject to occlusions, so that the acquired information
depends on system position and attitude. Advanced sen-
sors are often equipped with mechanisms that allow dif-
ferent regions and amounts of focus, such as radar beam-
forming, and hence allow to directly or indirectly ad-
just the spread and quality of the acquired information.
Based on this, the system operation may improve if the
controller can predict the impact of control decisions on
the uncertainty of the perceived environment informa-
tion and, accordingly, account for such varying uncer-
tainty in decision-making. For instance, in automated
driving, the control stack may determine an initial tra-
jectory that provides a better field of view or avoids oc-
clusions, while also determining the focus areas for radar
beamforming. This may reduce the uncertainty in crit-
ical road areas, so that more effective trajectories be-
come subsequently feasible. As a complicating factor, ad-
vanced sensors in actual applications are equipped with
on-board perception algorithms that the controller may
leverage but not re-design, and hence the degrees of free-
dom over perception are more limited.
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The interplay between control and perception has re-
cently received increasing attention. In [8], distance-
dependent measurement models are leveraged to solve
a combined estimation and control problem subject to
probabilistic collision avoidance. In [5], the control ac-
tions are designed to explore an unknown environment
while maximizing localization accuracy, but without
accounting for the uncertainty evolution. Perception-
aware control based on model predictive control (MPC)
is presented in [9] to track a reference while maximizing
the visibility of a point of interest. Similar concepts for
planning the motion of an autonomous system, while
concurrently maximizing the retention of obstacles or
landmarks in the sensor range (e.g., the camera’s field of
view) have also been proposed [7, 14, 19–21, 24–26, 28].
Some approaches improve the estimation of the ob-
stacles/targets by keeping them in the sensor field of
view, including by optimizing the observability Grami-
ans [21, 24]. In [15], a learning-based controller that
combines perception and control has been presented
that includes estimation of the uncertainty to assess
unsafe conditions. Nonetheless, the majority of these
works do not consider the impact of the varying envi-
ronment uncertainty on the constraints, and hence on
the controller, as the environment is explored. Further-
more, ensuring closed-loop stability in the presence of
the internal feedback, where perception affects control
and vice-versa, remains a non-trivial open problem.

In this paper, we consider a known nonlinear dynam-
ical system that operates in an environment that is
not known a priori. A given fixed estimator provides a
stochastic estimate of the environment state based on
information acquired from sensing, which depend on
the system state and input. The system operation is
not directly affected by process uncertainty, but rather
by the uncertainty in the knowledge of environment,
which affects the system operation through constraints
relating the system state and the environment state.
We design a perception-aware chance-constrained MPC
(PAC-MPC) 1 that uses the environment estimation
model to predict the evolution of the environment state
and uncertainty, which is then used to enforce chance
constraints [1, 11, 16, 18] between the system and envi-
ronment. Thus, PAC-MPC accounts for the effects of
the system operation on the perception quality, which
may lead to a better closed-loop performance. For ex-
ample, PAC-MPC may yield a trajectory that improves
the sensing, which, in turn, reduces the uncertainty in
the environment and thus reduces the tightening in the
chance constraints, possibly resulting in less conserva-
tive future trajectories. We propose suitable designs for
the cost function and terminal constraints, so that the
PAC-MPC guarantees probabilistic recursive feasibility

1 This paper extends our works [2–4] by providing detailed
proofs, a new method for controller design in the linear case
that avoids previous restrictive assumptions, additional de-
tails on the algorithms, and extended simulation studies.

and stability of the system state to its target and of the
environment estimate to its steady-state distribution.
Although our method shares similarities with output-
feedback MPC, see, e.g., [10], we consider a nonlinear
system where, for the practical reasons discussed be-
fore, the control algorithm cannot modify the estimator,
but only leverage its system actions-dependent perfor-
mance. Furthermore, we leverage the problem structure,
specifically the environment being dynamically decou-
pled from the system, to obtain stability results for
system state and environment uncertainty, as opposed
to convergence [10].

In what follows, Section 2 introduces the models for the
system, the environment, its measurements, and its es-
timator. In Section 3, we describe the general design of
PAC-MPC, and Section 4 provides general conditions
for the closed-loop recursive feasibility and stability. In
Section 5, we propose a constructive design for PAC-
MPC for the linear setting that satisfies the conditions
of Section 4. Section 6 presents the simulation results,
followed by the conclusions in Section 7.

Notation: R, R0+, R+, are the sets of real, nonnegative
real, positive real numbers, respectively, and similar for
integer numbers Z. We denote interval of numbers with
notations such as Z[a,b) = {z ∈ Z : a ≤ z < b}. Given
vectors x y, the i-th component is [x]i, the stacking is
(x, y) = [x′ y′]′, ‖x‖ is the 2-norm and ‖x‖2Q = x′Qx.

For a matrix X, ‖X‖F is the Frobenious norm, where
subscript may be dropped if clear from the context, and
the trace is tr(X). P[A] is the probability of A. For a
random vector x, E[x] = µx is the expectation and Σx

the covariance matrix. A normally distributed random
vector is denoted by x ∼ N (µx,Σx). The moments may
be grouped asMx = (µx,Σx). For a discrete-time signal
x ∈ Rn, xk is the value at sampling instant k, xj|k is
the predicted value at k + j based on data at k, and
x0|k = xk. A function α : R0+ → R0+ is of class K if
it is continuous, strictly increasing, and α(0) = 0. In
addition, if limc→∞ α(c) =∞, α is of class K∞.

2 Modeling and Problem Definition

We consider a discrete-time system described by

xsk+1 = fs(xsk, u
s
k), (1a)

ysk = qs(xsk, u
s
k), (1b)

where xs ∈ Rnx is the system state vector, us ∈ Rnu
is the system input vector, ys ∈ Rny is the system per-
formance output vector, fs : Rnx × Rnu → Rnx is the
system state update function and qs : Rnx×Rnu → Rny
is the system performance output function. System (1)
and xs are known at any time step, and are subject to

xs ∈ X , us ∈ U , (2)

2



where X and U are the state and input admissible sets,
respectively. We assume the following.

Assumption 1 System (1) is controllable in X with in-
put in U , and observable with respect to ys.

Remark 1 Throughout this paper, system (1) is as-
sumed to be known, i.e., deterministic. System uncer-
tainty may be accounted for by combining the proposed
method with standard results on MPC for uncertain
systems see [22, Ch.3] and references therein, e.g., by
first tightening the constraints according to a tube MPC
design, and then applying the methods described here.

In addition to (2), the environment in which the system
operates imposes additional constraints

hsl x
s + hel x

e ≤ hbl , l ∈ Z[1,nc,], (3)

where hsl ∈ Rnx , hel ∈ Rmx are known vectors, and
xe ∈ Rmx is the environment state vector describing
variables imposing constraints on the system, such as
positions of obstacles, velocities of other agents and an-
gles of boundary markings. The environment evolution
model is

xek+1 = fe(xek, ψk), (4a)

where ψ ∈ Rmψ describes the exogenous inputs to (4a)
and fe : Rmx × Rmψ → Rmx is the environment state
update function. Model (4) allows for representing sta-
tionary, e.g., boundary markings and fixed obstacles [3],
and moving, e.g., cars and workers [4], elements of the
environment by formulating constant dynamics or mo-
tion models, respectively. Thus, the environment state
xe contains all the information for modeling the position
and/or motion of the environment elements as needed
for prediction of the constraints. However, xe is not di-
rectly known, hence its probability distribution is esti-
mated based on perceived information,

yek = qe(xek, ζk, x
s
k, u

s
k), (4b)

where ye ∈ Rmy is the environment measurement vec-
tor, ζ ∈ Rmζ is the measurement noise, and qe : Rmx ×
Rmζ × Rnx × Rnu → Rmy is the environment measure-
ment function. We consider estimators that use the mea-
surements from (4b) to provide the first two moments of
a distribution of xe, namely mean µe ∈ Rmx and covari-
ance Σe ∈ Rmx×mx ,

µek+1 = gµ (µek, y
e
k, x

s
k, u

s
k) , (5a)

Σek+1 = gΣ (Σek, x
s
k, u

s
k) , (5b)

where gµ : Rmx×Rmy×Rnx×Rny → Rmx is the environ-
ment estimate mean update and gΣ : Rmx×mx × Rnx ×
Rny → Rmx×mx is the environment estimate covariance

update. Although the environment evolution (4a) does
not depend on (1), the estimate mean and covariance
updates in (5) depend on xs, us due to (4b). This en-
ables capturing the dependency of the perception perfor-
mance on the control decision, e.g., due to field of view
and occlusions, sensor focus areas and levels, or if a sen-
sor adjusts its gain based on focus or range. Often, the
effects of such decisions are appreciable only in the un-
certainty evolution, i.e., on the covariance update (5b),
but (5a) allows for capturing also the effects in the mean.
Since the environment exogenous input ψ in (4a) is not
known, in (5) it is modeled as process noise, resulting in
ψ, ζ being distributions described by the first two mo-
ments, µψ, Σψ, and µζ , Σζ , respectively. Such moments
are not shown explicitly in (5) since here they are as-
sumed to be constant for simplicity, though it is possible
to extend to the time-varying case. In the remainder of
the paper we will use the shorthand g(Me, ye, xs, us) for
the left hand side of (5).

Remark 2 Estimator (5) is assumed fixed because in
practical applications it is usually integrated in the sens-
ing system and hence not a design choice for the con-
troller. Here, we design a controller that leverages the
dependency of (5) on xs, us, to influence the estimate
performance and achieve the control objective, and we
provide suitable conditions on the estimator for this to
succeed.

While xe is not directly known, (5) may include infor-
mation on fe, if available. The only requirement for (5)
is to produce the first two moments µe,Σe of a valid dis-
tribution for xe. Using only the first two moments al-
lows for increased computational tractability, while ad-
ditional moments can be included in a similar way.

Remark 3 In the estimator (5), the covariance up-
date (5b) does not depend on the measurement ye, e.g.,
as in Kalman filters. Instead, (5a), (5b) depend on the
system states and inputs, which describe the dependence
of the perception quality on the control actions.

Now, we present the problem addressed in this paper.

Problem 1 Consider system (1) subject to con-
straints (2), environment (4), environment estima-
tor (5) and constraints (3) between system and environ-
ment. We want to design a control law that stabilizes
xs in an equilibrium where ys = r for a given output
setpoint r ∈ Rny , while satisfying (2) and (3), the latter
in a probabilistic sense due to the uncertainty in (5). 2

3 Perception-aware Chance Constrained MPC

We propose a perception-aware chance constrained
MPC (PAC-MPC) for solving Problem 1. Since the en-

3



vironment state is not directly known, the environment
prediction model is based on the estimator (5). How-
ever, (5) cannot be used for prediction because ye is not
known in advance. Thus, we predict mean and covari-
ance of the estimate of xe by the environment predictor

µ̂ek+1 = ĝµ (µ̂ek, µ
y
k, x

s
k, u

s
k) , (6a)

Σ̂ek+1 = ĝΣ

(
Σ̂ek,Σ

y
k, x

s
k, u

s
k

)
, (6b)

where µ̂e ∈ Rmx , Σ̂e ∈ Rmx×mx are the predicted mean
and covariance of the estimate of xe, ĝµ : Rmx ×Rmy ×
Rnx×Rny → Rmx and ĝΣ : Rmx×mx×Rmy×my ×Rnx×
Rny → Rmx×mx are the environment estimate predic-
tion mean and covariance update, respectively. In (6),
µy is the predicted measurement mean according to the
measurement prediction function qy : Rmx × Rnx ×
Rnu → Rmy

µyk = qy(µek, x
s
k, u

s
k), (7)

and Σy is the covariance of the measurement prediction
error, εy = ye − µy. In what follows we will use the

shorthand ĝ(M(e,y), xs, us) to refer to the left hand side
of (6). The following assumption is related to a “well-
designed” estimator.

Assumption 2 The mean estimator (5a) and mean
predictor (6a) are asymptotically convergent, i.e.,
µek → µ̄e∞, and unbiased, i.e., µe∞ = E[xe], for every
realization of the sequence {(xsk, usk)}.

Assumption 2 can be satisfied by proper estimator and
predictor designs. In fact, since the system operation
may affect the quality of the measurement (i.e., the co-
variance), but has minimal effects on the measurement
itself (i.e., the mean), the mean estimate will usually not
be greatly affected by the system state and input.

While constraints (2) involve only the state and input
of (1), which are known, constraints (3) involve the en-
vironment state, for which a stochastic distribution is
known from (5) and (6). Thus, (3) are enforced as indi-
vidual chance constraints (ICCs)

P
[
hsl x

s + hel x
e ≤ hbl

]
≥ 1− εl, l ∈ Z[1,nc,], (8)

where εl is the allowed probability of violation for the lth

constraint. The ICCs (8) can be formulated as tightened
deterministic constraints [11,18]

hsl x
s + [γ(M̂e)]l = hsl x

s + hel µ̂
e + [γ̄(Σ̂e)]l ≤ hbl , (9)

where γ is the impact of the environment on the con-
straints, and γ̄ is the constraint tightening (backoff) pa-
rameter due to the environment estimate uncertainty.

The cost function of PAC-MPC encodes the objective of
Problem 1. For a given reference rk ∈ Rny for the system

Fig. 1. Schematic of the relation between system, environ-
ment, estimator, and the control law of PAC-MPC.

performance output ys, PAC-MPC aims at stabilizing
xs in an equilibrium such that ysk = rk. The overall state
consists of xs, µe, Σe, where the mean of the environment
estimate is guaranteed to converge independent of xs, us

by Assumption 2. Hence, PAC-MPC must stabilize the
augmented state ξ = (xs,Σe). Accordingly, we define a
cost function that includes a terminal cost F : Rnx ×
Rmx×mx × Rny → R0+ and stage cost ` : Rnx × Rnu ×
Rmx×mx × Rny → R0+ such that

VN (xsk, Uk,Σ
e
k, rk) = (10)

F (xsN |k,Σ
e
N |k, rk) +

N−1∑
j=0

`(xsj|k, u
s
j|k,Σ

e
j|k, rk) =

Fc(x
s
N |k, rk) + Fp(x

s
N |k,Σ

e
N |k, rk)+

N−1∑
j=0

`c(x
s
j|k, u

s
j|k, rk) + `p(x

s
j|k, u

s
j|k,Σ

e
j|k, rk).

In (10), N ∈ Z+ is the prediction horizon; `c : Rnx ×
Rnu × Rny → R0+ and Fc : Rnx × Rny → R0+ are the
control stage and terminal costs, respectively, `p : Rnu×
Rmx×mx ×Rny → R0+ and Fp : Rmx×mx ×Rny → R0+

are the perception stage and terminal cost, respectively,

and Uk =
(
us0|k, . . . , u

s
N |k

)
.

Stabilizing the environment state estimate covariance,
also prevents an uncontrolled increase of Σe, which
would lead to large future tightening values in (9) and
hence a possible reduced performance or even loss of fea-
sibility. By combining the prediction models (1), (6), (7)
and the constraints (2), (9), at each sampling time
k, PAC-MPC solves the finite-horizon optimal control
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problem

V ∗N (xsk, µ
e
k,Σ

e
k, rk) =

min
Uk

VN (xsk, Uk,Σ
e
k, rk) (11a)

s.t. xsj+1|k = fs(xsj|k, u
s
j|k) (11b)

M̂e
j+1|k = ĝ(M̂(e,y)

j|k , xsj|k, u
s
j|k) (11c)

Σej+1|k = gΣ(Σej|k, x
s
j|k, u

s
j|k) (11d)

µyj|k = qy(µek, x
s
j|k, u

s
j|k) (11e)

(xsj|k, u
s
j|k) ∈ X × U (11f)

hs`x
s
j|k + [γ(M̂e

j|k)]` ≤ hbi ` ∈ Z[1,nc,] (11g)(
xsN |k, rk

)
∈ Zf (M̂e

N |k) (11h)

xs0|k = xsk, µ
e
0|k = µek, Σe0|k = Σ̂e0|k = Σek, (11i)

where Zf ⊆ Rns × Rny is the terminal set that de-
pends on the first two moments of the environment es-
timate, and is used to ensure recursive feasibility, as de-
scribed later. Denoting the solution of (11) by U∗k =
(us,∗0|k, . . . , u

s,∗
N−1|k), the PAC-MPC law with block dia-

gram shown in Fig. 1 is

usk = κmpc (xsk,Me
k, r) = us,∗0|k. (12)

Remark 4 In (11), there are two predictors for the
environment estimate covariance: (11d) yields Σe for

cost (11a), while (11c) yields Σ̂e for constraints (11g).
Since the future measurements yek are unknown, the pre-
dictor (6) includes additional uncertainty by Σy to safely
tighten the constraints (11g) Instead, (5b) does not re-
quire yek, and hence Σe for cost (11a) can be predicted
irrespective of the actual measurements. Both Σe0|k and

Σ̂e0|k are initialized to Σek, in (11i).

4 Recursive Feasibility and Stability Conditions

We now provide conditions for the design of the termi-
nal set Zf in (11h) and the terminal cost F in (11a) to
achieve recursive feasibility and stability in probability.

4.1 Recursive Feasibility Conditions

For a stabilizing MPC [23], the terminal set must be pos-
itively invariant for (1), (5) in closed-loop with a termi-
nal controller. We make the following assumptions.

Assumption 3 Given any ye from (4b) where Me =
(µe,Σe) are the moments of the estimate of xe,
γ(ĝ(M(e,y), xs, us))≥γ(g(Me, ye, xs, us)) for all xs, us.

Assumption 4 Given any two Me
1 = (µe1,Σ

e
1), Me

2 =

(µe2,Σ
e
2) such that γ(Me

1) ≥ γ(Me
2), γ(ĝ(M(e,y)

1 , xs, us)) ≥
γ(ĝ(M(e,y)

2 , xs, us)) for all xs, us.

Assumption 3 ensures that the predictor does not under-
estimate the constraint tightening with respect to the
environment mean and covariance estimate, and the in-
equality can be satisfied by the choice of Σy in accor-
dance to the measurement gain in the estimator (5). As-
sumption 4 requires that for any two sets of moments,
the one requiring a larger constraint tightening will re-
sult in a prediction that also imposes a larger constraint
tightening than the prediction of the other one. Thus, if
the uncertainty “mass” accounted for in the chance con-
straint is larger in one case when compared to another
case, it will remain larger after prediction is operated on
both. This amounts to (6) applying non-abrupt updates
to the estimate moments, and is satisfied when the esti-
mator gain is not excessively large.

Remark 5 While ideally Σy is chosen equal to the co-
variance of the measurement prediction error, for the re-
sults developed in the remainder of this paper it suffices
to choose Σy such that Assumption 3 holds. A method
that leverages scenario-based optimization in combina-
tion with PAC-MPC to reduce the conservativeness of Σy

at the price of an increased computational burden in the
optimal control problem was presented in [4].

Theorem 1 Let Assumptions 3, 4 hold. Let there exist
a control law κf : Rnx × Rmx × Rmx×mx × Rny → Rnu
and a set Zf (Me) such that if (xs, r) ∈ Zf (Me),

(i) xs ∈ X , κf (xs,Me, r) ∈ U ,
P
[
hsix

s + heix
e ≤ hbi

]
≥ 1− εi, i ∈ Z[1,nc,],

(ii) (fs(xs, κf (xs,Me, r)), r)

∈ Zf (ĝ(M(e,y), xs, κf (xs,Me, r))).

Then, if (11) is feasible at time k for (1), (5) in closed-
loop with (12) and rk+1 = rk, (11) is feasible at time
k + 1 with probability at least

∏nc
i=1 εi.

Proof 1 By (i), if (xs, r) ∈ Zf (Me), it also sat-
isfies (2) and (8). Let the solution at time k be
U∗k = (us,∗0|k . . . u

s,∗
N−1|k), yielding the state trajectory

X∗k = (xs,∗0|k . . . x
s,∗
N |k) and Γ∗k = (γ∗0|k . . . γ

∗
N |k). By the

ICCs (11g), the probability that the initial state at step
k + 1 satisfies the constraints is

∏nc
i=1 εi. Using the so-

lution at time k and the terminal controller κf (·), we

construct a candidate solution at k + 1, i.e., Ũk+1 =

(us,∗1|k . . . u
s,∗
N−1|k κf (xsN |k,M̂

e
N |k, r)), which yields

X̃k+1 = (xs,∗1|k . . . x
s,∗
N |k fs(xs,∗N |k, κf (xs,∗N |k,M̂

e
N |k, r))).

For Γ̃k+1, using X̃k+1, Ũk+1, from (6) we obtain
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γ̃j+1|k+1 = γ(ĝ(M̂(e,y)
j|k+1, x̃

s
j|k+1, ũ

s
j|k+1)). By Assump-

tion 3, γ(Me
k+1) ≤ γ(M̂e

1|k), and by combining As-

sumptions 3, 4, γ(M̂e
j|k+1) ≤ γ(M̂e

j+1|k) for all

j ∈ Z[1,...N−1]. Thus, the constraint tightening does
not increase, and hence all the constraints at steps
j ∈ Z[0,...N−1] are satisfied. Since by (ii) κf makes the
terminal set invariant for (1), (6), the terminal con-
straint (11h) is also satisfied. Thus, if xk+1 satisfies the
constraints, which has a probability at least

∏nc
i=1 εi, a

feasible solution of (11) exists.

In Theorem 1, (i) requires Zf to be contained in the set
where κf satisfies (2), (8) and (ii) requires it be invariant
for (1) in closed-loop with κf and (6), where Assump-
tions 3, 4 ensure invariance with the constraint tighten-
ing due to environment prediction. Although Theorem 1
is general, a design of the terminal controller and termi-
nal set to satisfy such assumptions may be challenging,
especially since the conditions concurrently involve the
design of the predictor and the terminal controller. If (6)
satisfies additional properties, a decoupled design of the
terminal controller κf and the predictor ĝ achieves sim-
ilar properties.

Corollary 1 Consider κf (xs,Me, r) = κf (xs, r),
Zf (Me) = Z̄f (γ(Me)) such that if γ(Me

1) ≤ γ(Me
2),

then Z̄f (γ(Me
1)) ⊇ Z̄f (γ(Me

2)). Let Assumptions 3, 4

hold, and let (6) be such that γ(ĝ(M(e,y), xs, κf (xs, r))) ≤
γ(Me) for all (xs, r) ∈ Zf (Me). Let κf (xs, r), Zf (Me)
be such that, if (xs, r) ∈ Zf (Me),

(i) xs ∈ X , κf (xs, r) ∈ U ,
P
[
hsix

s + heix
e ≤ hbi

]
≥ 1− εi, i ∈ Z[1,nc,],

(ii) (fs(xs, κf (xs, r)), r) ∈ Zf (Me).

Then, if (11) is feasible at time k and rk+1 = rk for (1),
(5) in closed-loop with (12), (11) is feasible at time k+ 1
with probability greater or equal to

∏nc
i=1 εi.

Proof 2 As for Theorem 1, we start by using (i) to note
that, if (xs, r) ∈ Zf (Me), it satisfies constraints (2), (8).
Following the reasoning of Theorem (1), since now κf (·)
does not depend onMe, the candidate solution at k + 1
is Ũk+1 = (us,∗1|k . . . u

s,∗
N−1|k κf (xsN |k, r)), which yields

X̃k+1 = (xs,∗1|k . . . x
s,∗
N |k fs(xs,∗N |k, κf (xsN |k, r))). Again,

we obtain Γ̃k+1 from X̃k+1, Ũk+1, (6) as γ̃j+1|k+1 =

γ(ĝ(M̂(e,y)
j|k+1, x̃

s
j|k+1, ũ

s
j|k+1)), and γ(M̂e

j|k+1) ≤ γ(M̂e
j+1|k)

for all j ∈ Z[1,...N−1] by combining Assumptions 3 and
4. Hence, all the constraints are satisfied up to the termi-
nal constraint. For the latter, if (xs,∗N |k, r) ∈ Zf (M̂e

N |k),

then (fs(xs,∗N |k, κf (xs,∗N |k, r)), r) ∈ Zf (M̂e
N |k) ⊆

Zf (M̂e
N |k+1). Thus there exists a feasible solution

for (11) as long as xsk+1 satisfies the constraints in the

initial step, which has probability at least
∏nc
i=1 εi.

In Corollary 1, the terminal control law κf does not
directly depend on the environment information Me.
The terminal set Zf depends on Me only through the
constraint tightening γ, and Zf does not shrink as γ
decreases.

Remark 6 In the proofs of Theorem 1 and Corollary 1,
Assumptions 3, 4 ensure that the previously predicted
PAC-MPC trajectory remains feasible when the one-step
ahead environment prediction is substituted with the up-
dated environment estimate, i.e., the tightening of (3)
due to ICC (8) does not expand. If Assumptions 3, 4
do not hold, besides a standard constraint softening, one
may modify the tightening γ(M̂e

j|k) to be the slacks of (3)

for the previously predicted PAC-MPC trajectory, when
the environment prediction is initialized by the updated
estimate from (5). This ensures that the previous PAC-
MPC solution is still feasible for (11), although the prob-
ability of satisfying (3) may be lower than the one in (8).
As in [10], this may be done if the solution to (11) with
tightening from (8) results in infeasibility.

4.2 Stability Conditions

Next, we investigate conditions under which the control
law (12) stabilizes (1) with the environment state esti-
mate provided by (5). In the rest of this section, for sim-
plicity of notation, rk = 0 for all k ∈ Z0+, and hence
omitted. The full state of (1), (5) is ϕ = (xs, µe,Σe),
where µe, Σe affect only the ICCs (9). Due to Assump-
tion 2, µe asymptotically converges to E[xe], and we only
need conditions that stabilize ξ = (xs,Σe) to an equilib-
rium ξr = (xr,Σr), being the equilibrium state for (1)
and the equilibrium covariance (i.e., uncertainty) for (5).

Proposition 1 The function

‖ξ‖ = ‖xs‖+ ‖Σe‖F (13)

is a norm for ξ = (xs,Σe).

Proof 3 The function is nonnegative, since it sums the
norms of xs and ‖Σe‖F , and it is 0 only if both are 0,
i.e., if ξ = (0, 0). Given ξ1 = (xs1,Σ

e
1), ξ2 = (xs2,Σ

e
2),

‖ξ1 + ξ2‖ = ‖x1 + x2‖ + ‖Σe1 + Σe2‖ ≤ ‖x1‖ + ‖Σe1‖ +
‖x2‖+ ‖Σe2‖ = ‖ξ1‖+ ‖ξ2‖.

We denote the dynamics of (1), (5) by ϕk+1 =
Φ(ϕk, u

s
k, y

e
k), by ς the function that selects ξ from ϕ,

i.e., ς(ϕ) = ς((xs, µe,Σe)) = (xs,Σe) = ξ, Φξ = ς ◦ Φ,
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and we write (10) as

VN (ξ, U) = F (ξN |k) +

N−1∑
j=0

`(ξj|k, u
s
j|k), (14)

where F (ξ) = Fc(x
s) + Fp(Σ

e) and `(ξ, us) =
`c(x

s, us) + `p(Σ
e). The value function of (11) is

V ∗N (ϕ) = V ∗N (xs, µe,Σe).

Assumption 5 The control stage cost is such that
`c(x

s, 0) ≤ `c(x
s, us) for all us ∈ U and there exist

functions αcl , α
p
l , α

c
u, α

p
u ∈ K∞ such that `c(x

s, 0) ≥
αcl (‖xs‖), Fc(x

s) ≤ αcu(‖xs‖) and `p(Σ
e) ≥ αpl (‖Σe‖),

Fp(Σ
e) ≤ αpu(‖Σe‖).

Assumption 6 The control law u = κf (ϕ) is such
that for all xs ∈ Zf (Me), F (ξ) ≥ `(ξ, κf (ϕ)) +
F (Φξ(ϕ, κf (ϕ), ye)) and

fs(xs, κf (ϕ)) ∈ Zf (ĝ(Me,My, xs, κf (ϕ))). �

Assumption 5 is standard for MPC cost functions (11a),
see [22], and Assumption 6 is related to the existence of
local control Lyapunov function, and will be satisfied by
the designs proposed later.

We first prove that under Assumptions 5, 6 V ∗N (ϕ), is a
Lyapunov function of ξ for (1) in closed-loop with (12).

Lemma 1 Let Assumptions 5, 6 hold, then there exist
functions αl, αu, α∆ ∈ K∞ such that

αl(‖ξ‖) ≤ V ∗N (ϕ) ≤ αu(‖ξ‖), (15a)

V ∗N (Φ(ϕ, κmpc(ϕ), ye))− V ∗N (ϕ) ≤ −α∆(‖ξ‖), (15b)

whenever (11) is feasible for (xsk, µ
e
k,Σ

e
k) = ϕ and for

Φ(ϕ, κmpc(ϕ), ye).

Proof 4 By construction V ∗N (ϕ) ≥ `(ξ, 0). Under the
assumptions, we can choose

αl(‖ξ‖) = min {(αcl (1/2‖ξ‖), α
p
l (1/2‖ξ‖))}

since by (13) ‖Σe‖ ≥ 1/2 ‖ξ‖ for ‖Σe‖ ≥ ‖xs‖, and the
opposite holds when ‖xs‖ ≥ ‖Σe‖. Thus,

αl(‖ξ‖) ≤ αcl (1/2‖ξ‖) ≤ α
p
l (‖Σ

e‖) ≤ `p(Σe)
≤ `(ξ, 0) ≤ V ∗N (ϕ).

For the upper bound, [23] guarantees that there exists
c > 0 such that cF (ξ) ≥ V ∗N (ϕ). Then,

V ∗N (ϕ) ≤ cFc(xs) + cFp(Σ
e) ≤ cαcu(‖xs‖) + cαpu(‖Σe‖)

≤ cαcu(‖ξ‖) + cαpu(‖ξ‖) = αu(‖ξ‖).

By [23], ifF (ξ) ≥ `(ξ, κf (ϕ))+F (Φξ(ϕ, κf (ϕ), ye)), then

V ∗N (Φ(ϕ, κmpc(ϕ), ye))− V ∗N (ϕ) ≤ −`(ξ, κmpc(ϕ))

≤ −`(ξ, 0) ≤ −αl(‖ξ‖) = −α∆(‖ξ‖).

Theorem 2 Let Assumption 5 and the conditions of
Theorem 1 or Corollary 1 hold. If for all xs ∈ Zf (Me)

Fc(f
s(xs, κf (ϕ))− Fc(xs) + `c(x

s, κf (ϕ)) ≤ −M(xs)
(16a)

Fp(gΣ(Σe, xs, κf (ϕ)))− Fp(Σe)
+ `p(ξ, κf (ϕ)) ≤M(xs) (16b)

are satisfied, where M is a nonnegative function, at ev-
ery step the closed-loop (1), (5), (12) has probability at
least

∏nc
i=1 εi to evolve according to the Lyapunov func-

tion (15).

Proof 5 Theorem 1 and Corollary 1 ensure that (11)
is recursively feasible with probability

∏nc
i=1 εi at every

step and that κf makes the terminal set invariant, i.e.,

fs(xs, κf (ϕ)) ∈ Zf (ĝ(M(e,y), xs, κf (ϕ))). If (16) holds,
F (ξ) ≥ `(ξ, κf (ϕ)) + F (Φξ(ϕ, κf (ϕ), ye)). Thus, the as-
sumptions of Lemma 1 are all satisfied. Hence, with prob-
ability equal to that of satisfying the chance constraints,∏nc
i=1 εi, the closed-loop dynamics evolve according to the

Lyapunov function (15) for ξ = ς(ϕ).

Remark 7 Theorem 2 proves the stability of ξ =
(xs,Σe) = ς(ϕ), since we consider that the system
operation affects the measurement quality, i.e., the co-
variance, and not its value, i.e., the mean. Proving the
stability of ϕ also requires guaranteeing the stability of
the mean estimate µe, by modifying Assumption 2.

5 Constructive Design for Linear Dynamics

The conditions in Section 4 for recursively feasibility
and closed-loop stability are established for a general
nonlinear system and, hence, it is hard to derive a general
constructive procedure to satisfy them. Next, we derive a
constructive design procedure for achieving the recursive
feasibility and stability properties of Section 4 for the
case in which (1), (2), (4), (5), (6) are linear. Let (1) be
the linear system

xsk+1 = Asxsk +Bsusk, (17a)

ysk = Esxsk, (17b)

and the constraints in (2) be polyhedral

Hxxs ≤ Kx, Huus ≤ Ku. (18)
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For (5), we consider a linear estimator based on the open-
loop environment model

xek+1 = Aexek +Beψk, (19a)

yek = Ce(xsk, u
s
k)xek +De(xsk, u

s
k)ζk, (19b)

where ψk ∼ N (µψ,Σψ) and ζk ∼ N (µζ ,Σζ). The envi-
ronment estimate mean and covariance evolve as

µek+1 = Λkµ
e
k +Beµψ − Lkyek, (20a)

Σek+1 = ΛkΣekΛ′k +Q+Rk, (20b)

where Ck = Ce(xsk, u
s
k), De

k = De(xsk, u
s
k), Lk =

L(xsk, u
s
k), Λk = Λ(xsk, u

s
k) = Ae+LkCk, Q = BeΣψBe′,

and R(xsk, u
s
k) = LkD

e
kΣζ(LkD

e
k)′. As in (4), the mea-

surement (19b) depends on the system states and in-
puts to describe the variable perception quality. Based
on (20), the predictor (6) takes the form

µ̂ek+1 = Λkµ̂
e
k +Beµψ − Lkµyk, (21a)

Σ̂ek+1 = ΛkΣ̂ekΛ′k +Q+ R̂k, (21b)

where R̂k = R̂(xsk, u
s
k) = Lk(De

kΣζDe
k
′ + Σyk)L′k to ac-

count for the measurement prediction error.

We consider a constant reference r for ys. Under As-
sumption 1, given r, by setting [ru]i to nominal values
for the inputs [u]i that only affect (19b), i.e., perception,
we obtain unique constant setpoints rx and ru for xs

and us, respectively. Next, we design the terminal con-
straint (11h) and cost (11a) such that (17), (18), (19),
(8) in closed-loop with (12), (20) satisfy the properties
of Section 4.

5.1 Terminal Set Design

Due to linearity of (17), (18), we consider terminal con-
trollers of the form

u = κf (xs, r) = Kfx
s +Gfr, (22)

where Kf is a stabilizing gain for (17) and Gf provides
unitary dc-gain from r to y when (17) is in closed-loop
with (22). The challenge in constructing the terminal set
using [13] is that (9) depends nonlinearly on Σe, which
is not constant and cannot be predicted open-loop since
it is affected by the control actions. Let the admissible
references be constrained by Hrr ≤ Kr, we construct
the maximum constrained admissible set (MCAS) [13]
for (17) in closed-loop with (22),

O∞ = {(xs0, r0, η) : Hxxsk ≤ Kx, Huκf (xs, r) ≤ Ku,

Hrrk ≤ Kr, hsix
s
k + [η]i ≤ hbi , i ∈ Z[1,nc,], ∀k ∈ Z0+},

(23)

with the additional dynamics rk+1 = rk = r and ηk+1 =
ηk. Set (23) is the MCAS of a lifted system, where η
describes the tightening margin on the ICCs. We de-
fine O∞(η) = {(xs, r) : (xs, r, η) ∈ O∞}.

Corollary 2 Let (1), (2) be (17), (18), respectively. Let
Zf (Me) = O∞(γ(Me)), (6) be such that for all (xs, r) ∈
Zf (Me), γ(ĝ(M(e,y), xs, κf (xs, r))) ≤ γ(Me). If As-
sumptions 3, 4 hold and (11) is feasible at time k and
rk+1 = rk, (11) is feasible at time k + 1 for (17), (20),
(12) with probability greater or equal to

∏nc
i=1 εi.

Proof 6 We prove the result by showing that, under the
stated assumptions, the assumptions of Corollary 1 hold,
which then provide the result. The choice of Zf (Me)
satisfies: (i) in Corollary 1 by the definition of (23) when
η = γ(Me); and (ii) in Corollary 1 since the MCAS is
positively invariant [13] for (17) in closed-loop with (22).
In addition, O∞(η1) ⊇ O∞(η2) when η2 ≥ η1 due to the
monotonicity ofO∞ with respect to the admissible region.
Due to the remaining assumptions, all the assumptions
of Corollary 1 are satisfied, hence proving the statement.

5.2 Stabilizing Terminal Cost Design

To provide constructive stability conditions, we consider
the case where Λ(xs, us) = Λ = Ae + LCe, i.e., the
estimation error update matrix does not depend on the
system state and input. The dependency on state and
input can still be present inR(xs, us), as well as in L and
Ce, if it cancels out in the product. For the linear case,
in (10) we consider the control stage and terminal costs

`c(x
s, us, r) = ||xs − rx||2Qc + ||us − ru||2Rc , (24a)

Fc(x
s, r) = ||xs − rx||2Pc , (24b)

where Qc, Rc, Pc > 0 are weight matrices. For the per-
ception cost, we construct the steady-state environment
covariance by

Σr = ΛΣrΛ′ +Q+R(rx, ru).

For Σ̄e = Σe−Σr, R̄(xs, us) = R(xs, us)−R(rx, ru), we
obtain the error of the covariance matrix with respect
to the steady-state as Σ̄ek+1 = ΛΣ̄ekΛ′ + R̄(xsk, u

s
k). The

perception stage and terminal costs in (10) are chosen as

`p(Σ
e
k) = Sc‖Σ̄ek‖2F , (25a)

Fp(Σ
e
k) = Wc

Np−1∑
h=0

ρh‖ΛhΣ̄ekΛh
′‖2F , (25b)

where Np ∈ Z+, ρ ∈ R[1,∞) are design parameters. The
terminal perception cost (25a) is the sum of the envi-
ronment covariance matrix errors, over horizonNp, from
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the terminal state at the end of the prediction horizon
for the closed-loop (17), (22). Thus, (25a) is the finite-
horizon approximation of the perception cost-to-go. We
allow Np ≥ 1 because if Np = 1 as in [2], the cost de-
crease condition requires the Frobenius norm of the co-
variance error to contract in a single step, which in turn
requires ‖Λ‖F < 1 that is not always possible to achieve.
Instead, with a convergent estimator (Assumption 2),
there always exists Np ∈ Z+ such that ‖ΛNp‖F < 1.

In the general case, Np may need to be computed by
simulations. However, when Λ(xs, us) = As +LCs, it is
straightforward to find a value for Np that satisfies the
condition.

Corollary 3 Consider (17), (18), and (22) and the en-
vironment (19). Let the environment estimator be (20)
where Λ(xs, us) = Λ, Zf (Me) = O∞(γ(Me)) and the
assumptions of Corollary 2 hold. If there exist Wc, Sc ∈
R+, % ∈ R+, Mc ≥ 0, Np ∈ Z+, such that for all
(xs, r) ∈ Zf (Me),

ρ ≥ (1 + %), (26a)

ρNp‖ΛNp‖2F ≤ 1− Sc/Wc, (26b)

xs′Mcx
s

(1+%−1)Wc
≥
Np−1∑
i=0

ρh‖ΛhR̄(xs, κf (xs, r))Λh
′‖2F , (26c)

Pc − (As +BsKf )′Pc(A
s +BsKf ) ≥

K ′fRcKf +Qc +Mc, (26d)

then with (12), the evolution of ξ = (xs,Σe) satisfies (15)
at each step with probability at least

∏nc
i=1 εi.

Proof 7 We prove that the conditions of Theorem 2
hold. Due to κf satisfying Corollary 2, the terminal con-
troller has the properties in Corollary 1. Next, we show
that (16) holds. As in Theorem 2, we consider rk =
rk+1 = 0 for simplicity and omit it. Choosing M(xs) =
xs′Mcx

s, (16a) amounts to (26d). For (16b), let R̄f =
R̄(xs, κ(xs)) and Σe+ = ΛΣeΛ′ +Q+Rf (xs), then

Fp(Σ
e
+) = Wc

Np−1∑
h=0

ρh‖Λh(R̄f (xs) + ΛΣ̄eΛ′)Λh
′‖2F

= Wc

Np∑
h=1

ρh−1‖ΛhΣ̄eΛh
′
+ Λh−1R̄f (xs)Λh−1′‖2F

≤Wc

Np∑
h=1

ρh−1((1 + %)‖ΛhΣ̄eΛh
′‖2F

+ (1 + %−1)‖Λh−1R̄f (xs)Λh−1′‖2F )

≤Wc

Np∑
h=1

ρh‖ΛhΣ̄eΛh
′‖2F +M(xs),

where we used Young’s inequality (first upper bounding)

that holds for every % ∈ R+, and (26d) (second upper
bounding). Thus,

Fp(Σ
e
+) + `p(Σ

e)− Fp(Σe)−M(xs)

≤ Sc‖Σ̄e‖2F −Wc‖Σ̄e‖2F + ρNpWc‖ΛNpΣ̄eΛNp
′‖2F

≤Wc‖Σ̄e‖2F (ρNp‖ΛNp‖2F + Sc/Wc − 1).

Since ρNp‖ΛNp‖2F ≤ 1 − Sc/Wc by (26b), (16b) holds
and all the conditions of Theorem 2 hold.

Conditions (26) of Corollary 3 require choosing Np
such that ‖ΛNp‖2F < c/ρNp , c < 1. By Assumption 2,

limh→∞ ‖Λh‖2F = 0, and hence it is always possible to
satisfy it. The coefficient ρ is related to % in Young’s
inequality from (26a). We could set ρ = 1 if the (non-
squared) Frobenius norm is used in (25), which would
result in a more challenging optimization problem.
Condition (26c) bounds the increase in the perception
cost due to the difference between R(xs, κf (xs, r)) and
the steady-state R(rx, ru). Such bound is accounted for
in (26d) to ensure that any increase in perception cost
is compensated by a larger decrease of the control cost.
Mc and Kf can be determined iteratively, possibly by
simulation and linear regression, since they only depend
on an initial state xs, where (xs, r) ∈ Zf (Me).

Remark 8 Extending the design to a general Λ(xs, us)
requires considering the h-steps state transition matrices∏h
`=0 Λ(xs(`), κf (xs(`), r)), where xs(`) is the `-steps ahead

prediction of xs based on (17), (22) for the time-varying
system, as opposed to Λh, and defining a reference tra-
jectory for the covariance matrix that converges to the
setpoint, so that one can express the error of the covari-
ance matrix as Σ̄ek+1 = Λ(xs, κf (xs))Σ̄ekΛ(xs, κf (xs))′+

R̄(xsk, u
s
k).

Remark 9 For perception cost `p(ξ, u) = Sc (tr(Σe)− tr(Σr))
2
,

Fp(ξ) = Wc (tr(Σe)− tr(Σr))
2

as in [3], stability cannot
be proved directly since the trace is a semi-norm with
non-unique zero. Thus, we can only prove asymptotic
stability to a set of equilibria. By imposing the constraints
Σ̄e0 > 0, R̄k > 0 for all k ∈ Z0+, where Σ̄e, R̄ are dif-
ferences from setpoints, Σ̄ek > 0 for every k ∈ Z0+ and
stability can be proved using arguments from LaSalle’s
invariance principle.

6 Case Study

For the ease of illustration, we show the behavior of PAC-
MPC on a double integrator case study. A more realis-
tic automated driving case study is described in details
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in [4]. We consider xs ∈ R2, us ∈ R2 and

A =

[
1 0.5

0 1

]
, B =

[
0.5 0

1 0

]
, E =

[
1 0

]

in (17) with sampling period Ts = 1. Input [u]2 ∈ [0, 1]
only impacts the environment measurement quality. The
constraint sets in (2) are X = {x ∈ R2 : |[x]i| ≤ 10, i =
1, 2}, U = {u ∈ R2 : , [u]1 ∈ [−5, 5], [u]2 ∈ [0, 1]}, and
(17) is also subject to the ICCs

P
[
[xs]i − [xe]i ≤ 0

]
≥ 1− 0.05, i = 1, 2, (27)

where xe ∈ R2 is the environment state. We consider
an environment with two elements, both of which are
unknown but constant and measured subject to noise, so
that the model is (19), with Ae = I, Be = 0, Ce = Ae,
ζ ∼ N (0, I), and

De
k = (1− β[uk]2)D̄, (28)

where β ∈ (0, 1), D̄ ∈ R2×2, showing measurement
dependency on [u]2. The control objective is to regu-
late the system state to rx = 2, with ru = 0, and
the environment estimate covariance to its steady-state
for xs = rx, us = ru. For weights in (24) assigned as
Qc = diag(0.1, 0.01), Rc = diag(0.1, 1), the controller
is designed as described in Section 5, where the envi-
ronment estimator and predictor are (20), (21), respec-
tively, Lk = −0.45 · I for all k ∈ Z0+ in (20), (21),
Np = 3, ρ = 3, Sc = 1, Wc = 2.5 in (25). In (26), % = 2,
Ms = 20 · I2, P c, Kf are obtained by solving (26d)
as an LMI, and Zf (Me) is the O∞ set (23). Assump-
tions 1, 5, 6 are known to hold for the chosen system,
cost and terminal set, Assumption 2 holds by the esti-
mator design, Assumption 3 holds by choosing Σy based
on the prediction error, and Assumption 4 holds due to
the environment model where the disturbances and es-
timator error are zero-mean, see, e.g., [10].

Fig. 2 shows the closed-loop trajectories for different sys-
tem initial states and the same initial environment es-
timate covariance. All the trajectories reach the desired
steady-state while satisfying the constraints according
to (27). Fig. 2 also shows that the closed-loop trajecto-
ries of the environment covariance has low sensitivity to
the system initial state. Fig. 3 shows the closed-loop tra-
jectories for fixed system initial state, but different en-
vironment estimate initial covariance. Also in this case,
the trajectories stabilize to the setpoint.

Next, we consider a measurement quality dependent on
the system state. That is, in (17) we substitute (28) by

[De
k(xsk, u

s
k)]i=[De

0]i(([µ
e]i−[xs]i)/`i)

2, i = 1, 2, (29)

Fig. 2. PAC-MPC for double integrator with input-depen-
dent measurements. Closed-loop state, input, and environ-
ment covariance trajectories for different initial system states
and fixed initial environment uncertainty (gray), constraints
(dash black), true environment constraints (dash red), per-
ception input (dash gray), deterministic constraints (dash,
black) . One simulation shown in blue, with corresponding
ICCs based on environment estimate mean and covariance
(solid, dark red) (solid, black).

where `i is a length-scale constant. Fig. 4 shows the
closed-loop trajectories for different system initial states
and the same initial environment estimate covariance.
Also in this case, all the trajectories stabilize to the de-
sired steady-state while satisfying the constraints most
of the time according to (27), but with higher sensitivity
to the initial environment estimate covariance.

To verify that the chance constraints provide the desired
probability of satisfaction of constraints (27), we simu-
lated 100 Monte Carlo runs, each of 200 time steps, when
rx = 5.5, i.e., slightly infeasible, to activate the con-
straints often and to get a tighter approximation of the
empirical probability of constraint satisfaction. This re-
sulted in a 98% constraint satisfaction, which is in agree-
ment with the lower bound of 95% imposed by (27). The
solution of the PAC-MPC optimal control problem (11)
took in average 22 ms (and less than 30 ms in the worst
case) at each control cycle when implemented in Mat-
lab and solved with IPOPT via CasADi on a 2020 In-
tel MacBook Pro with 16 GB RAM. The reported com-
puting times were obtained without any code or solver
optimization.
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Fig. 3. PAC-MPC for double integrator with input-depen-
dent measurements. Closed-loop state, input, and environ-
ment covariance trajectories for fixed system states and dif-
ferent initial environment uncertainty (gray), constraints
(dash black), true environment constraints (dash red), per-
ception input (dash gray), deterministic constraints (dash,
black) . One simulation shown in blue, with corresponding
ICCs based on environment estimate mean and covariance
(solid, dark red) (solid, black).

7 Conclusions

We considered the control of a known system in an un-
known environment that imposes constraints on the sys-
tem operation. Since the environment is estimated via
sensing, the constraints are uncertain. As the sensing
quality is also affected by the system state and hence by
the control actions, this results in an interdependence
between sensing and control. We proposed a perception-
aware chance-constrained model predictive control and
a stabilizing design, which results in a constructive pro-
cedure, when the system dynamics are linear. Future
work will involve exploiting sensing models constructed
by machine learning that have already been tested in
simulation but pose challenges to stability analysis, im-
proving the computational efficiency using specialized
solvers (e.g., [12]), and evaluating the proposed control
strategy in applications using the corresponding sensing
models, e.g., [27].
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