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Abstract
Extreme weather events have posed tremendous challenges to the operation of distribution
networks. In this paper, we propose a decision-dependent chance-constrained model for the
optimal planning of diesel generators, renewable distributed generations (RDGs), energy stor-
age systems, and switches under contingency. A promising moment-based ambiguity set that
incorporates the information of decision variables is employed to depict the uncertainty arising
from RDGs. By leveraging effective approximation methods such as the Bonferroni approx-
imation method to handle the considered joint chance constraints, the proposed model is
transformed into a tractable mixed-integer second-order conic programming problem, which
means it can easily be implemented. Numerical experiments are put forward on the IEEE
33-bus test system to validate the effectiveness of the developed approach.
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Abstract—Extreme weather events have posed tremendous 
challenges to the operation of distribution networks. In this 
paper, we propose a decision-dependent chance-constrained 
model for the optimal planning of diesel generators, renewable 
distributed generations (RDGs), energy storage systems, and 
switches under contingency. A promising moment-based 
ambiguity set that incorporates the information of decision 
variables is employed to depict the uncertainty arising from 
RDGs. By leveraging effective approximation methods such as 
the Bonferroni approximation method to handle the considered 
joint chance constraints, the proposed model is transformed into 
a tractable mixed-integer second-order conic programming 
problem, which means it can easily be implemented. Numerical 
experiments are put forward on the IEEE 33-bus test system to 
validate the effectiveness of the developed approach.  

Keywords—Chance constraint, contingency, distributionally 
robust optimization, distribution network, renewable energy.  

I. INTRODUCTION 
 In recent decades, the ever-increasing frequency of 

extreme weather events such as hurricanes [1] has 
significantly influenced the economic and environmental 
benefits of modern power systems. The blackouts caused by 
these events will result in great difficulties for system 
operations. Hence, grid resilience is becoming a vital factor to 
protect against extreme weather events. Particularly, since 
most power outages are prone to happen in distribution 
networks, more investments need to be conducted at the 
distribution level to enhance the resilience.  

To achieve this goal, one of the appealing approaches is to 
plan the integration of electric power infrastructures, such as 
renewable distributed generations (RDGs), energy storage 
systems (ESSs), and switches. In general, installing them 
efficiently will give rise to quite a few inspiring advantages. 
For example, RDGs can maximize the penetration of clean 
renewable energy and provide many services (e.g., reactive 
power support) to the grid [2]. However, there also exist a host 
of challenges. The biggest one is how to satisfactorily 
internalize the uncertainty originating from RDGs, as the 
energy generated by RDGs is naturally random. Stochastic 
optimization (SO) and robust optimization (RO) are thus 
extensively adopted in the existing literature to accommodate 
the uncertainty [3], [4]. Although these two methods can 
render moderate dispatch plans under uncertainty, SO is either 

over-optimistic or computationally challenging, while RO 
tends to deliver over-conservative strategies. In this regard, 
distributionally robust optimization (DRO), which acts as a 
complementary approach between SO and RO, is explored 
recently [5], [6]. DRO can bridge the gaps of SO and RO since 
it can embed the distributional information of uncertainties 
and guarantee the distributional robustness via the constructed 
ambiguity set. Moment-based and metric-based DRO are two 
of the most popular paradigms. On the other hand, chance-
constrained programming is also a widely leveraged method 
to handle the uncertainty, which requires that security 
constraints will be satisfied with a predefined confidence level 
[7]. Currently, coupled with DRO, distributionally robust 
chance constrained (DR-CC) models are also investigated. 
This methodology requires that the chance constraints (CCs) 
will hold for all candidate distributions within the ambiguity 
set [8]. However, many works only focus on addressing the 
DR individual CCs [6]–[8]. Compared to individual CCs, the 
joint chance constraint [9] can enforce multiple constraints to 
be satisfied simultaneously, and thus provide a higher 
reliability to the system. Needless to say, joint CCs are often 
NP-hard and more challenging than individual CCs. 
Therefore, tractable reformulations are urgently needed to 
solve this issue.  

In this work, to improve the resilience of distribution 
systems, a planning model that aims to design various electric 
power infrastructures is developed while utilizing the DR joint 
CC method. A novel moment-based ambiguity set with the 
information of decision variables (i.e., decision-dependent) is 
harnessed to deal with the renewable forecast uncertainty. 
This exploited ambiguity set can describe the uncertainty 
more accurately. By applying convex approximations, the 
proposed model is cast as a mixed-integer second-order conic 
programming (SOCP) problem. Case studies on the IEEE 33-
bus test system illustrate the effectiveness of the proposed 
method.  

This paper contains four other sections. Section II presents 
the model formulation. Section III describes the solution 
approach to the model. Section IV reports the case studies, and 
Section V concludes the paper.  

II. MODEL FORMULATION  
In this part, the planning model for a distribution network 

is first presented, which consists of normal conditions with 
renewable forecast uncertainty and blackout conditions 																		The	work	of	A.	Zhou	was	done	while	he	was	working	at	MERL.	 
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induced by extreme weather events. Then the moment-based 
ambiguity set is introduced.  

A. The Planning Model  
The objective function of the planning model for 

distribution network infrastructures is described as:  
min
𝒙
{𝐶" + 𝐶# + 𝐶$ + 𝐶% + 𝐶& + 𝐶' + 𝐶(},           (1a) 

where 𝒙 is the decision vector. 𝐶" means the set-up cost and 
the size-based maintenance cost for RDGs.  𝐶# is the cost of 
the power purchased from the main grid under the normal 
condition. 𝐶$ includes the set-up cost, the power generation 
cost, and the emission cost of dispatchable diesel generators. 
𝐶% denotes the set-up cost and the degradation cost for ESSs. 
𝐶& represents the set-up cost and the switching cost for the 
specific switches. 𝐶' is the load shedding cost. 𝐶( denotes the 
expected adjustment cost regarding the uncertainty 
internalized by dispatchable diesel generators. The explicit 
expressions of them are given as:  

𝐶" = ∑ ∑ (𝑐)*+ + 𝑐)"𝑇𝑟))𝑧)*,
*-"

.!
)-" ,                  (1b) 

𝐶# = ∑ ∑ 1𝑐/0𝑝/1 + 𝑐/2𝑞/141∈4"/∈5 ,                   (1c) 
𝐶$ = ∑ 𝑐6*+ 𝑧6*,

*-" +∑ ∑ 1𝑐*
7𝑝*81 + 𝑐*9𝑐97𝑝*81 4*∈,#1∈4 ,        (1d) 

𝐶% = ∑ 𝑐9*+ 𝑧9*,
*-" +∑ ∑ 𝑐9//1𝜂*8:𝑝*8:1 +*∈,$1∈4

	𝑝*68:1 𝜂*68:⁄ 4∆𝑡,             (1e) 
𝐶& = ∑ 𝑐/*;+ 𝑧/*;(*,;)∈?% +∑ ∑ 1𝑐6*/𝑚*;

1 + 𝑐8@A𝑛*;1 4(*,;)∈?%1∈4 , 
(1f) 

𝐶' = ∑ ∑ 𝑐B∆𝑝B1B∈C1∈4 ,                        (1g) 
𝐶( = sup

ℙ∈𝒟&
𝔼ℙ @∑ ∑ 𝑐*F8𝛽*,1𝒔1*∈,#1∈4 C.             (1h) 

In (1b), 𝐾G is the total number of RDGs to be installed. N is 
the total number of buses. T is the total number of time 
intervals in the planning horizon. 	𝑐)*+  denotes the setup cost 
of placing the kth RDG at bus i. 𝑐)"  is the size-based 
maintenance cost of the kth RDG. 𝑟)  means the given 
capacity of the kth RDG. 𝑧)*  is the binary indicator if kth 
RDG is located at bus i. In (1c), 𝑇A  is the set of time intervals 
under normal conditions (i.e., without extreme weather). 𝑆 
denotes the set of substations. 𝑐/0  and 𝑐/2  are the costs of the 
active and reactive power purchased from the substation s, 
respectively. 𝑝/1	and 𝑞/1 indicate the active and reactive power 
purchased from the substation s at time t. In (1d), 𝑐6*+  is the 
setup cost of dispatchable diesel generators at bus i. 𝑧6*   is the 
binary indicator if a diesel generator is located at bus i. 𝑁8  is 
the set of buses with dispatchable diesel units. 𝑐*

7
 and 𝑐*9  are 

the fuel and emission cost coefficients of diesel generators, 
respectively. 𝑐97  is the emission cost coefficient of diesel 
generators. 𝑝*81  is the active power generated by diesel 
generators. In (1e), 𝑐9*+  is the setup cost of ESSs at bus i. 𝑧9*  is 
the binary indicator if an ESS is located at bus i. 𝑁9  is the set 
of buses with ESSs. 𝑐9//  is the degradation cost coefficient. 
𝜂*8:  and 𝜂*68:  are the charging and discharging efficiencies of 
ESS i. 𝑝*8:1  and 𝑝*68:1

 are the charging and discharging power 
of ESS i at time t. ∆𝑡 is the time step. In (1f), 𝐵H  is the set of 
given branches that switches can be installed. 𝑐/*;+  is the setup 
cost of switches at branch (i,j). 𝑧/*;  is the binary indicator if a 
switch is installed at branch (i,j). 𝑐6*/  and 𝑐8@A  are the costs of 
disconnecting and connecting a switch. 𝑚*;

1
 and 𝑛*;1  are 

auxiliary binary variables that denote disconnecting and 
connecting the switch at branch (i,j). In (1g), L is the set of 
loads. 𝑐B  is the cost of load shedding. ∆𝑝B1 is the interrupted 

load at time t. In (1h), ℙ  is a probability distribution. 𝒟1  

means an ambiguity set. 𝑐*F8  is the adjustment cost. 𝛽*,1  is the 
participation factor. 𝒔1  is the sum of renewable power 
forecasting error at time t, which represents the 
corresponding uncertainty of RDGs. 

The constraints of the planning model are then expressed 
by: 

1). Output constraints of diesel generators: 
𝑧6*𝑝*8

1,IJK ≤	𝑝*81 ≤ 𝑧6*𝑝*8
1,ILM, 𝑖 ∈ 𝑁8,𝑡 ∈ 𝑇,        (2a) 

𝑧6*𝑞*8
1,IJK ≤	𝑞*81 ≤ 𝑧6*𝑞*8

1,ILM, 𝑖 ∈ 𝑁8 , 𝑡 ∈ 𝑇,       (2b) 

inf
ℙ∈𝒟&

ℙO
𝑝*81 + 𝛽*,1𝒔1 ≤ 𝑧6*𝑝*8

1,ILM	
𝑝*81 − 𝛽*,1𝒔1 ≥ 𝑧6*𝑝*8

1,IJK R ≥ 1 − 𝜖*8 , 𝑖 ∈ 𝑁8,𝑡 ∈ 𝑇,  

(2c) 
where 𝑝*8

1,IJK, 𝑝*8
1,ILM and 𝑞*8

1,IJK, 𝑞*8
1,ILM denote the active and 

reactive power minimal and maximal limits of diesel 
generators, respectively. 𝑞*81   is the reactive power generated 
by diesel generators. 𝜖*8  is the risk parameter. (2a) and (2b) 
are the constraints of active and reactive power limits of 
diesel generators. (2c) is the DR joint chance constraint 
regarding the maximal and minimal active power limitations 
of diesel generators, which leverages the affine control policy 
[5] to tackle the renewable uncertainty 𝒔1.  

2). Constraints of participation factors: 
∑ 𝛽*,1 = 1*∈,# , 𝛽*,1 ≥ 0, 𝑡 ∈ 𝑇,                (3) 

where (3) restricts the values of participation factors of diesel 
generators and ensures that the variation of 𝒔1  is fully 
compensated.  

3). Constraints of ESSs: 
0 ≤ 𝑝*8:1 ≤ 𝛼*,18 𝑝*8:

1,NFO, 𝑖 ∈ 𝑁9 , 𝑡 ∈ 𝑇,            (4a) 
0 ≤ 𝑝*68:1 ≤ 𝛼*,16 𝑝*68:

1,NFO, 𝑖 ∈ 𝑁9 , 𝑡 ∈ 𝑇,           (4b) 
𝛼*,18 + 𝛼*,16 ≤ 1, 𝑖 ∈ 𝑁9 , 𝑡 ∈ 𝑇,                  (4c) 
𝛼*,18 ≤ 𝑧9* , 𝑖 ∈ 𝑁9 , 𝑡 ∈ 𝑇,                     (4d) 
𝛼*,16 ≤ 𝑧9* , 𝑖 ∈ 𝑁9 , 𝑡 ∈ 𝑇,                     (4e) 

𝑆𝑂𝐶*,1P" = 𝑆𝑂𝐶*,1 + 1𝜂*8:𝑝*8:1 − 𝑝*68:1 𝜂*68:⁄ 4∆𝑡, 
𝑖 ∈ 𝑁9 , 𝑡 ∈ 𝑇,        (4f) 

𝑆𝑂𝐶*,1IJK ≤ 𝑆𝑂𝐶*,1 ≤ 𝑆𝑂𝐶*,1ILM, 𝑖 ∈ 𝑁9 , 𝑡 ∈ 𝑇,  (4g) 
where 𝑝*8:

1,NFO and 𝑝*68:
1,NFO mean the charging and discharging 

power limits of ESSs. 𝛼*,18  and 𝛼*,16  are binary variables that 
denote the charging and discharging states of ESSs. 𝑆𝑂𝐶*,1IJK 

and 𝑆𝑂𝐶*,1ILM  indicate the energy storage limits of ESSs. 
𝑆𝑂𝐶*,1  is the energy storage of ESS i. (4a) and (4b) show the 
charging and discharging power limits of ESSs, respectively. 
(4c) implies that the charging and discharging cannot happen 
at the same time. (4d) and (4e) mean the relationship 
between 𝛼*,18 , 𝛼*,16 , and 𝑧9*. (4f) depicts the dynamics of the 
energy of ESS i. (4g) imposes the minimal and maximal 
capacity limits of ESS i. 

4). Constraints of switches: 
𝑜*;1Q" − 𝑜*;1 ≤ 𝑚*;

1 , (𝑖, 𝑗) ∈ 𝐵H, 𝑡 ∈ 𝑇,           (5a) 
𝑜*;1 − 𝑜*;1Q" ≤ 𝑛*;1 , (𝑖, 𝑗) ∈ 𝐵H, 𝑡 ∈ 𝑇,           (5b) 
∑ ∑ 1𝑚*;

1 + 𝑛*;1 4(*,;)∈?%1∈4 ≤ 𝑠F,               (5c) 
𝑜*;1 ≥ 1 − 𝑧/*; , (𝑖, 𝑗) ∈ 𝐵H, 𝑡 ∈ 𝑇,              (5d) 

where 𝑜*;1  is the status variable for switch (i, j). 𝑠F  is the 
maximal number of switching times. (5a) and (5b) present the 
relationship between switch action variables and switch 



status variables. (5c) defines the maximal number of switch 
operations over T. (5d) means the relationship between the 
switch status variable and setup binary variable. 

5). Constraints of the substation: 
𝑝/1 = 𝑞/1 = 0, 𝑠 ∈ 𝑆, 𝑡 ∉ 𝑇A,                    (6) 

where (6) means that the substation cannot provide the active 
and reactive power due to the blackout time. 

6). Power balance constraints at each bus: 

\ 𝑝7*1
7:(7,*)∈?

+ \ 𝑝/1
/-*,/∈5

+ \ 𝑧)*𝑝H1
H-*,H∈S

+ \ 𝑝*81
*,*∈,#

 

+ \ 𝑝*68:1

*,*∈,$

= \ 𝑝*;1
;:(*,;)∈?

+ \ (𝑝B1 − ∆𝑝B1)
B-*,B∈C

+ \ 𝑝*8:1
*,*∈,$

, 

	𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,    (7a) 

\ 𝑞)*1
7:(7,*)∈?

+ \ 𝑞/1
/-*,/∈5

+ \ 𝑧)*𝑞H1
H-*,H∈S

+ \ 𝑞*81
*,*∈,#

 

= \ 𝑞*;1
;:(*,;)∈?

+ \ (𝑞B1 − ∆𝑞B1)
B-*,B∈C

, 

𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,     (7b) 

where B and G are the set of branches and RDGs. 𝑝*;1  and 𝑞*;1  
are the active and reactive power flows of branch (𝑖, 𝑗). 𝑝H1  
and 𝑞H1  are the active and reactive power outputs of RDGs. 𝑝B1 
and 𝑞B1  are the active and reactive loads. ∆𝑞B1  is the 
interrupted reactive power loads.	 

7). Constraints for blackout and normal cases: 
∆𝑝B1 = 0, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇A,                        (8a) 

∑ 𝑜B1 ≥ 𝑇TB1∉4" , 𝑙 ∈ 𝐿8 ,                       (8b) 

𝑜B1Q" ≥ 𝑜B1 , 𝑙 ∈ 𝐿8 , 𝑡 ∉ 𝑇A,                       (8c) 

0≤ ∆𝑝B1 ≤ (1 − 𝑜B1)∆𝑝B1 , 𝑙 ∈ 𝐿8 , 𝑡 ∉ 𝑇A,            (8d) 

where 𝑜B1  is a binary variable that ensures the full load at 
blackout time. 𝐿8  is the set of critical loads. 𝑇TB  is the minimal 
number of time intervals for full loads. (8a) means that there 
exist no interrupted loads under normal conditions. (8b) and 
(8c) denote that the minimal number of time intervals without 
load shedding for critical loads should be met. (8d) 
guarantees that the critical loads are full loads during 𝑇TB.  

8). Thermal capacity constraints of branches: 
1𝑝*;1 4

# + 1𝑞*;1 4
# ≤ 𝑜*;1 1𝑠*;ILM4

#
,(𝑖, 𝑗) ∈ 𝐵, 𝑡 ∈ 𝑇,   (9) 

where 𝑠*;ILM is the apparent power capacity of branch (𝑖, 𝑗). 
(9) denotes the limitation of the power flow at branch (𝑖, 𝑗).	

9). Voltage constraints: 
_𝑣*IJK_

# ≤ |𝑣*1|# ≤ |𝑣*ILM|#,𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,      (10a) 

|𝑣*1|# − _𝑣;1_
# ≤ 11 − 𝑜*;1 4𝑀 + 2𝑅*;𝑝*;1 + 2𝑋*;𝑞*;1 , 

   𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,  (10b) 

|𝑣*1|# − _𝑣;1_
# ≥ 1𝑜*;1 − 14𝑀 + 2𝑅*;𝑝*;1 + 2𝑋*;𝑞*;1 , 

𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,       (10c) 

where |𝑣*1|#	 is the squared voltage magnitude at bus 𝑖 . 
_𝑣*IJK_

#
 and |𝑣*ILM|# are the squared voltage limitations. M is 

a very large value. 𝑅*; 	 and 𝑋*;  are the resistance and 
reactance of branch (𝑖, 𝑗). (10a) restricts the boundaries of 
voltage magnitude at each bus. (10b) and (10c) are based on 
the DistFlow model. 

B. Construction of the Ambiguity Set 
The design of a well-defined ambiguity set is crucial to 

capture the stochasticity and variability of uncertainties and 
tackle the proposed model. Generally speaking, the 
probability information of a random vector 𝛚  cannot be 
accurately known and oftentimes only a series of observed 
samples {𝝎h", 𝝎h#, ⋯ ,𝝎h.} with a support 𝓢 are accessible. In 
this case, we can obtain the sample mean as 𝝁h = "

.
∑ 𝝎h *.
*-"  

and the sample covariance as 𝚺m = "
.
∑ (𝝎h * − 𝝁h)(𝝎h * −.
*-"

𝝁h)V. 

Hence, we construct the following moment-based 
ambiguity set: 

𝒟 = @𝝎 ∈ 𝓢: 𝔼ℙ[𝝎] = 	𝝁h, 𝔼ℙ[𝝎𝝎V] = 	𝚺mC,     (11) 
which means that it contains all the distributions satisfying 
the given moment constraints. 

Besides, there are many forms of the support 𝓢, e.g., a 
hyper-box, a polytope, or an ellipsoid. Here, we assume that 
the support 𝓢 is a hyper-box and dependent on the decision 
vector 𝒙 . Then the radius 𝑟(𝒙)  of the support can be 
calculated by the following expression [10]:  

𝑟(𝒙) = "
#
∑ |𝒙*| q𝑠Wr − 𝑠*sA
*-" ,                           (12) 

where 𝑠Wr  and 𝑠*  are the upper and lower bounds in all 
dimensions in 𝓢. n is the dimension. 

As a result, (11) and (12) make up the decision-dependent 
moment-based ambiguity set. 

III. SOLUTION METHODOLOGY 
In this part, we investigate the solution method for our 

planning model. 

A. Reformulation of Objective Function 
Since the empirical mean is known, the worst-case 

expected generation cost 𝐶( is equal to: 
𝐶( = sup

ℙ∈𝒟&
𝔼ℙ @∑ ∑ 𝑐*F8𝛽*,1𝒔1*∈,#1∈4 C = ∑ ∑ 𝑐*F8𝛽*,1𝝁h1*∈,#1∈4 , 

 (13) 
where 𝝁h1  is the sample mean of 𝒔1. 

B. Reformulation of DR Joint CCs 
For ease of exposition, we first re-express DR joint CC 

(2c) as a compact form: 
inf
ℙ∈𝒟

ℙ{𝑎*(𝒙)V𝝎 ≤ 𝑏*(𝒙), 𝑖 = 1,2,⋯ , 𝐼} ≥ 1 − 𝜖,   (14) 
where 𝝎 ∈ ℝ,  denotes the random vector. I is the number of 
DR individual CCs. 𝑎*(𝒙) ∈ ℝ,  and 𝑏*(𝒙) ∈ ℝ  are both 
affine in 𝒙. 

Firstly, by leveraging the classical Bonferroni 
approximation method [11] to deal with the DR joint chance 
constraint (14), (14) can be approximatively transformed into 
the following problem: 



inf
ℙ∈𝒟

ℙ {𝑎*(𝒙)V𝝎 ≤ 𝑏*(𝒙)} ≥ 1 − 𝜖* , 𝑖 = 1,2,⋯ , 𝐼, (15a) 
∑ 𝜖*X
*-" ≤ 𝜖, 𝜖* ≥ 0, 𝑖 = 1,2,⋯ , 𝐼,              (15b) 

where 𝜖*  indicates the risk parameter for DR individual 
chance constraint 𝑖. To obtain a tractable reformulation of 
(14), as recommended in [11], we set 𝜖* = 𝜖/𝐼. 

Besides, under the ambiguity set (11), the DR individual 
chance constraint (15a) admits a deterministic SCOP 
problem, which is revealed in the following proposition: 

Proposition: Assuming that the support of the random 
vector 𝝎  is a hyper-box, then (15a) can be transferred 
approximately via: 

𝝁hV𝑎(𝒙) + 𝜙𝒦 	𝑟(𝒙) + 𝜋𝒦{
"QZ'
Z'
‖𝒚‖# ≤ 𝑏(𝒙),    (16a) 

~𝑎(𝒙)V𝚺m𝑎(𝒙) ≤ 𝑦",  \              (16b) 
~2𝜙𝒦 	𝑟(𝒙) ≤ 𝑦#,                   (16c) 

where 𝒚 = �
𝑦"
𝑦#� ∈ℝ

#  is a vector of auxiliary variables, and 
(𝜙., 𝜋.) are positive scalars that depend on the number of 
samples K and 𝜖*: 

𝜙𝒦 = 𝒦[()Q
(
*\,                                (16d) 

𝜋𝒦 = �1 − %
Z'
exp

Q]𝒦
(
)Q#^

*

#_
�

Q(*

,               (16e) 

while 
𝑝 > 2,𝒦 > 12 + ~1𝑙𝑛(4 𝜖*⁄ )4

0
.           (16f) 

By using (16) to reformulate the joint chance constraint 
(2c), (2c) is finally reduced to an SOCP problem that can 
readily be implemented. 

C. Reformulation of (8d) 
Since (8d) is a bilinear constraint, the big-M method is 

utilized here to linearize these constraints. Then (8d) can be 
replaced by: 

0 ≤ ∆𝑝B1 ≤ 𝛾,                                    (17a) 

−𝑀𝑜B1 ≤ ∆𝑝B1 − 𝛾 ≤ 𝑀𝑜B1,                         (17b) 
−𝑀(1 − 𝑜B1) ≤ 𝛾 ≤ 𝑀(1 − 𝑜B1),                  (17c) 

where 𝛾 is a new auxiliary variable. If 𝑜B1  = 0, then ∆𝑝B1 = 𝛾, 
and if 𝑜B1  = 1, then 𝛾 = 0.  

D. Circular Constraint Linearization Method for (9) 

In this study, two square constraints are exploited to 
approximate the circular constraint (9), which provides a 
sufficient level of precision for practical applications. The 
two square constraints invoked in this paper are cast as: 

−𝑜*;1 𝑠/*;NFO ≤ 𝑝*;1 ≤ 𝑜*;1 𝑠/*;NFO,(𝑖, 𝑗) ∈ 𝐵, 𝑡 ∈ 𝑇,       (18a) 
−𝑜*;1 𝑠/*;NFO ≤ 𝑞*;1 ≤ 𝑜*;1 𝑠/*;NFO,(𝑖, 𝑗) ∈ 𝐵, 𝑡 ∈ 𝑇,        (18b) 

−√2𝑜*;1 𝑠/*;NFO ≤ 𝑝*;1 + 𝑞*;1 ≤ √2𝑜*;1 𝑠/*;NFO,(𝑖, 𝑗) ∈ 𝐵, 𝑡 ∈ 𝑇, 
 (18c) 

−√2𝑜*;1 𝑠/*;NFO ≤ 𝑝*;1 − 𝑞*;1 ≤ √2𝑜*;1 𝑠/*;NFO,(𝑖, 𝑗) ∈ 𝐵, 𝑡 ∈ 𝑇, 
 (18d) 

To sum up, by leveraging (13) to tackle the worst-case 
cost function (1h), using (16) to tackle the DR joint CC (2c), 
and applying (17) and (18) to handle (8d) and (9), the 
proposed planning model is reduced to a tractable mixed 

integer SOCP problem, which can be solved by CPLEX 
solver. 

IV. NUMERICAL SIMULATION  
In this section, a modified IEEE 33-bus test system is 

introduced to validate the effectiveness of our proposed 
model. The structure of this system is depicted in Fig. 1. Two 
diesel generators are placed at buses 15 and 21, two ESSs are 
placed at buses 7 and	29,	and	two	wind	farms	are	placed	at	
buses	17	and	31,	respectively.	A	critical	load	is	placed	at	
bus	19,	while	 three	switches	are	placed	at	branches	 (2,	
22),	(5,	6),	and	(27,	28),	respectively.	The	parameters	of	
diesel	generators,	ESSs,	wind	farms,	and	loads	can	be	seen	
in	[2]	and	[12].	The	parameters	of	switches	can	be	seen	in	
[6].	 Other	 system	 parameters	 can	 be	 found	 in	 [2].	 The	
parameters	 𝜖!" 	and	 𝑇#$ 		 are	 set	 to	 be	 0.1	 and	 10,	
respectively.	The	whole	time	horizon	𝑇	=	48h,	while	the	
black	out	time	is	from	𝑡=25	to	𝑡	=34.	The	parameters	𝑝	=	
5	and	𝐾	=	4000.		

	

Fig.	1.	Structure	of	the	IEEE	33-bus	test	system.		

Considering that the renewable forecast uncertainty 𝒔1 
depends on the installed statues of wind farms, a RDG statues 
enumeration method is used to determine the optimal solution 
of the planning model. We first assume the installed statues 
for each candidate RDG, then get a corresponding estimation 
for 𝒔1, after that the planning model is solved by using the 
estimated 𝒔1. The final optimal solution is determined as the 
least cost solution among all solutions generated by using 
different combination of RDG installation statuses. 

A. Set-Up	Performance	 
In	 this	 subsection,	 the	 set-up	 performance	 of	 diesel	

generators,	ESSs,	wind	farms,	and	switches	is	presented.	
The	results	are	shown	in	Table	I.	In	Table	I,	“1”	means	that	
the	facility	will	be	installed,	and	“0”	otherwise.		

TABLE I.  SET-UP RESULTS OF THE PROPOSED MODEL 

Set-up Cost of One 
RDG 

Generators ESSs RDGs Switches 

0.4 × 10!($) 1,1 1,1 0,1 1,1,1 
0.4 × 10"($) 1,1 1,1 0,0 1,1,1 

Set-up Cost of One 
ESS 

Generators ESSs RDGs Switches 

0.1 × 10!($) 1,1 1,1 0,1 1,1,1 
0.4 × 10"($) 1,1 0,0 0,1 1,1,1 

As	 shown	 in	 Table	 I,	 it	 can	 be	 seen	 that	 the	 set-up	
decision	will	be	affected	by	 its	 cost.	For	example,	when	
increasing	the	set-up	cost	of	ESSs,	the	set-up	performance	
of	 these	 two	 ESSs	 will	 be	 totally	 different.	 This	 is	



reasonable	since	there	exists	a	trade-off	between	the	set-
up	cost	and	operational	cost.	Once	the	set-up	cost	is	high,	
installing	the	related	facility	will	not	be	economical.	 
B. Comparison with Other Methods 

To further assess the proposed method (denoted as M1), 
two other methods are applied here for comparisons, they are:  

M2: Gaussian-based joint CC planning model with given 
mean (𝝁h ) and covariance (𝚺m ). In M2, it presumes that the 
uncertainty follows the Gaussian distribution. The parameter 
𝜖* = 𝜖/I.  

M3: Moment-based joint CC planning model with given 
mean (𝝁h) and covariance (𝚺m ). In M3, the parameter 𝜖* = 𝜖/I.  

It should be noted that M2 and M3 can also reformulate 
the individual chance constraint (15a) as SOCP problems [8]. 
The cost results and the lowest reliability results regarding the 
security constraint (2c) with 10' samples of the three methods 
are reported in Table II. As observed from Table II, M2 
renders the lowest total cost among the three methods, since 
the particular Gaussian distribution is employed to capture the 
uncertainties, which is often aggressive. Besides, M1 gives a 
higher cost than M3 as the constructed decision-dependent 
ambiguity set in M1 describes the uncertainty more 
accurately. As for the reliability results, it can be seen that M1 
and M3 can satisfy the reliability requirement (i.e., 90%), 
whereas M2 cannot. And M1 has the highest reliability level, 
validating the good performance of the proposed method.  

TABLE II.  COMPARISON WITH OTHER METHODS  

Method Total Cost ($) Lowest Reliability (%) 
M1 1.0841 × 10# 97.8 
M2 8.0360 × 10" 87.6 
M3 8.0410 × 10" 94.3 

V. CONCLUSION 
This paper presents a chance-constrained planning model 

for distribution networks under contingency. To engage with 
uncertainty arising from RDGs, a decision-dependent 
moment- based ambiguity set is designed. Various effective 
approximation methods are then leveraged to reformulate the 
proposed model as a tractable mixed-integer second-order 

conic programming problem. Simulation results show the 
effectiveness of the developed approach. Our future work will 
capitalize on other ambiguity sets to accommodate the 
uncertainty.	 
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