
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Extended Kalman Filter-based Predictive Maintenance of
High-Voltage DC/DC Converter

Rahman, Syed; Liu, Dehong; Menner, Marcel; Wang, Yebin; Takegami, Tomoki

TR2023-131 October 18, 2023

Abstract
Isolated converters are the ideal candidate for high-gain DC/DC converter applications. Al-
though the design of converters considers safety margins and derating requirements to ensure
acceptable performance until the end of product life, it does not completely rule out any
early component failure. It is inevitable that the post-deployment stresses result in compo-
nent aging and subsequent failure before the end of its useful life. To minimize downtime,
early failure signatures need to be detected for predictive maintenance, which requires contin-
uous/periodic monitoring of critical components. This paper presents an Extended Kalman
Filter (EKF)-based predictive maintenance algorithm of a 2kW, 270V/28V DC/DC converter.
The detailed mathematical framework and observability analysis highlighting the feasibility
of state/parameter estimation are presented. Based on observability analysis, the converter
operating condition is devised such that accurate parameter estimation is achievable at a
lower sensor sampling rate (equal to the switching time period). The significance of module-
exclusive measurements on the observability and estimation of parameters is also discussed for
a two-module system. The analyses presented are validated with detailed simulation results
for single (2kW) and double (2x2kW) modules to estimate parameters of the filter inductor
and the output capacitor.

IEEE Industrial Electronics Society (IECON) 2023

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Extended Kalman Filter-based Predictive
Maintenance of High-Voltage DC/DC Converter

Syed Rahman1,2, Dehong Liu1, Marcel Menner1, Yebin Wang1, and Tomoki Takegami3

1Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA
2Dept. of Elec. & Comp. Engr., Texas A&M University, College Station, TX 77840, USA

3Advanced Technology R&D Center, Mitsubishi Electric Corporation, Hyogo, Japan
{rsyed,liudh,menner,yebinwang}@merl.com, Takegami.Tomoki@dy.MitsubishiElectric.co.jp

Abstract—Isolated converters are the ideal candidate for high-
gain DC/DC converter applications. Although the design of
converters considers safety margins and derating requirements
to ensure acceptable performance until the end of product life,
it does not completely rule out any early component failure. It is
inevitable that the post-deployment stresses result in component
aging and subsequent failure before the end of its useful life. To
minimize downtime, early failure signatures need to be detected
for predictive maintenance, which requires continuous/periodic
monitoring of critical components. This paper presents an
Extended Kalman Filter (EKF)-based predictive maintenance
algorithm of a 2kW, 270V/28V DC/DC converter. The detailed
mathematical framework and observability analysis highlighting
the feasibility of state/parameter estimation are presented. Based
on observability analysis, the converter operating condition is
devised such that accurate parameter estimation is achievable
at a lower sensor sampling rate (equal to the switching time
period). The significance of module-exclusive measurements on
the observability and estimation of parameters is also discussed
for a two-module system. The analyses presented are validated
with detailed simulation results for single (2kW) and double
(2×2kW) modules to estimate parameters of the filter inductor
and the output capacitor.

Index Terms—Predictive maintenance, parameter estimation,
extended Kalman filter, DC/DC converter, observability.

I. INTRODUCTION

With the development of efficient wide-bandgap semicon-
ductors and high-frequency magnetic components, the fast-
switching power converter technology is quickly replacing the
conventional low-frequency transformers [1]. This paradigm
shift in power converter technology helps in achieving high
power density, improved efficiency, and optimal control [2].
However, these efforts also reduce the footprints and con-
sequently smaller surface areas to dissipate heat, resulting
in complex thermal design and soft-switching requirements
to achieve high reliability, especially in custom-built power
systems such as aircraft. To ensure reliability, design features
such as over-design, and redundancies are employed [3].

Post-deployment, the components are subjected to extreme
operating conditions, mechanical shocks, and load transients.
Continuous exposure to these conditions ages the compo-
nent [4]. To ensure acceptable performance throughout the
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product life, the components are designed with safety margins,
considering the derating requirements. However, this practice
does not eliminate the chance of component failures. Capacitor
and semiconductor failure account for 51% of power convert-
ers [5]. To address this concern, fault diagnosis algorithms are
used. The fault diagnosis algorithms are a reactive approach
and are either signal processing-based or model-based. In the
first method, the diagnostic signal is searched for a fault
signature to identify the fault, whereas model-based algorithms
use analytical knowledge of the power converters, and employ
diagnostic strategies such as sliding-mode observers, state
estimation, etc. [4], [5].

To minimize unscheduled maintenance, health monitoring
of components (to predict early failure) is proposed in the
literature. The philosophy here is to observe the fault precur-
sors of different components. For example, the effective series
resistance (ESR) value is a good indicator of the capacitor’s
health [6]. These precursors may not be directly measurable
and must be estimated. The estimation methods are either
data-driven or model-based. Data-driven methods are mostly
based on machine learning and require existing input data
for hypothesis formulation and training [7]. On the other
hand, the model-based methods include Kalman filters, sliding
mode observer, and Luenberger observers. These methods are
dependent on developing a reliable model of the power con-
verter [8], including parasitic, as most precursors are parasitic
in nature. The other important aspect is the selection of sensor
measurements, which dictates the observability and estimation
of state variables [9].

Extended Kalman Filter (EKF)-based techniques are used
in DC/DC converters for implementing sensorless voltage
control algorithm ( [10]–[12]) and parameter-estimation based
fault diagnostics in DC/DC converters [13]–[15]. Non-isolated
DC/DC converters are considered for fault diagnosis.

This paper extends these efforts and implements the EKF-
based parameter estimation for a full-bridge DC/DC converter.
Detailed state-space modeling considering the component par-
asitics is presented. This model is then augmented using
the Jacobian method (parameter drift estimation model) to
include the dynamics and cross-coupling of parameters and
the original states. As output voltage and current are sensed
conventionally for closed-loop control in DC/DC converters,



these measured signals are used in the EKF. Observability
for the joint state and parameter estimation is determined
by linearizing at all operating points (consisting of both
transient and steady-state). The modeling and analysis help
in concluding that capacitance value is not observable during
steady state, and requires transient states for estimation. This
background is then used for devising a control-side based duty-
cycle induced transients, which improves the capacitance value
estimation, and also helps in reducing the sensor sampling time
requirement. These analyses are extended to two parallelly
connected DC/DC converter modules, measuring the modular
inductor current and the common output voltage. The issue of
loss of observability of output-side capacitance values is also
highlighted and validated through simulation results.

The remainder of this paper is structured as follows. Sec-
tion II briefly discusses the DC/DC converter under study,
including the topology in Section II-A, parameter design in
Section II-B, and fundamentals of dynamic system modeling
and augmented matrix construction for the power converter
in Section II-C. Observability of the state variables and
component parameters of the power converter is discussed
in Section III-A. This concept is extended to two parallelly
connected modules in Section III-B. The detailed simulation
results captured to validate the analysis are discussed in
Section IV. Finally, Section V concludes the paper.

II. SYSTEM UNDER STUDY

A. Topology

The isolated DC/DC converter topology is shown in Fig. 1.
It consists of a MOSFET-based H-bridge on the input side,
and a full-bridge diode rectifier at the output side, isolated by
a high-frequency transformer. With MOSFETs on the input
side, this converter is controlled by modulating the duty cycle
of the primary side switches to generate a square or quasi-
square voltage at the transformer input. The secondary side
diodes conducts to transfer power to the output.

For efficient predictive maintenance, the parasitics of the
circuit are also considered. Parasitics include forward re-
sistance of primary MOSFETs (Rmp), voltage drop across
diode (Vd), inductor internal resistance (Rlk) and effective
series resistance (ESR) of the capacitor (Rc). The converter
is modeled assuming continuous conduction mode operation.

B. Parameter Design

This converter is designed to step down 270V DC to 28V
DC. The power converter is rated for 2kW. Assuming rated
efficiency of 95%, the rated input current is 8A, whereas the
output current is 71A. The duty cycle (d) of the converter is
given by

d =
Vo

n(Vin − 2VM )− 2Vd −RlkIL
, (1)

where VM is the voltage drop across the MOSFET, and Vd is
the drop across the secondary diodes. For an operational duty
cycle of 0.7, the transformer turns ratio is obtained to be 1/6.5.

Fig. 1. Full-Bridge DC/DC Converter.

Assuming a current ripple of 10% of the rated output current
(71A), the filter inductor (Lf ) is given by [16]

Lf =

(
n(Vin − 2VM )− 2Vd − Vo

f∆ILmax

)
d. (2)

The capacitor (Cf ) for a voltage ripple of 3% is given by [16]

Cf =

(
∆ILmax

f∆Vomin

)
d. (3)

This gives a filter inductor of 14.5 µH, and filter capacitor of
0.11mF. Considering safety margin of 50% for the inductor,
it is taken as 22µH/100A, whereas the capacitor is rated for
220µF. The capacitors are realized through parallel combi-
nation of Al electrolytic capacitors (PCH1H181MCL1GS -
82µF/50V) and ceramic capacitors (KCM55QR71J106KH01K
- 10µF/63V). The primary side MOSFET is rated for
1000V/32A (C3M0065100K). The secondary side diodes are
rated for 100V/100A (VS-100BGQ100).

C. Converter Modeling

The DC/DC converter modeling, considering the two oper-
ating modes, is given by[

i̇L
v̇c

]
=

[
−Req

L
−Ga

L
Ga

C
−Ga

RLC

] [
iL
vc

]
+

[
u1

0

]
, (4)

y =

[
RcGa Ga

1 0

] [
iL
vc

]
, (5)

where Req = Rlk + RcGa + 2ndRmp, y = [Vo, iL]
⊤, Ga =

1/(1+ra), ra = Rc/RL, u1 = V ′
in/L, and V ′

in = ndVin−2Vd.
A similar analysis can be carried out for the discontinuous
conduction mode, by considering the zero inductor current
period in addition to the two operating modes.

As discussed in Section II-A, this model contains the
parasitic element of each component. These parasitics are the
most important failure precursors. For example, in case of Al
electrolytic capacitor, the deteriorating health is reflected in
terms of its reduced capacitance and increased ESR value. In
case of inductor, thermal aging results in increased core-losses
and self-heating. This continuous self-heating deteriorates the
winding insulation, finally resulting in an inter-turn fault of
the inductor (reflected as a reduced inductance). Similarly,
increasing ON-state resistance is a strong failure precursor
for MOSFETs [17]. With the current state-space model, it
is observed that the health status of the converter, owing to



aging or ambient temperature variation, can be characterized
by [L,C,Rc]. It is arguably true that compared with variables
iL and vc, the quantities [L,C,Rc] are slowly time-varying
and can be treated as parameters, i.e., L̇ = 0, Ċ = 0, Ṙc = 0.
For estimation of the parameters, the augmented matrix con-
sisting of cross-coupling/inter-connection terms between these
parameters and the actual state variables is exploited.

The augmented converter model is given by
i̇L
v̇c
L̇

Ċ

Ṙc

 =


−Req

L
−Ga

L a13 0 a15
Ga

C
−Ga

RLC 0 a24 a25
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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iL
vc
L
C
Rc

+


u1

0
0
0
0

 ,

(6)

y =

[
RcGa Ga 0 0 −G2

a

RL
VD

1 0 0 0 0

]
iL
vc
L
C
Rc

 , (7)

where a13 = (ReqIL + GaVc)/L
2, a15 = Ga2

LRL
VD, a24 =

Ga
RLC2VD, and a25 =

G2
a

CR2
L
VD, and VD = Vc − RLIL. In (6),

IL and Vc correspond to the inductor current and capacitor
voltage at the operating point of the converter.

To avoid numerical discrepancies, this model can be ex-
pressed using the state vector X = [iL, vc, θ1, θ2, Rc]

⊤ as state
variables, where θ1 = 1/L and θ2 = 1/C. With these state
variables, the augmented converter model admits the following
state space representation:

Ẋ =


−Reqθ1 −Gaθ1 θ13 0 θ15
Gaθ2

−Gaθ2
RL

0 θ24 θ25
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

Ax

X +


θ1
0
0
0
0


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V ′
in,

(8)

y =

[
RcGa Ga 0 0 −G2

a

RL
VD

1 0 0 0 0

]
︸ ︷︷ ︸

Cx

X, (9)

where θ13 = −ReqIL−GaVc, θ15 =
G2

aθ1
RL

VD, θ24 = −Ga
RL

VD,

and θ25 =
G2

a

R2
L
VD.

III. OBSERVABILITY ANALYSIS

A. Single DC/DC Converter

The objective here is to analyze the observability of the state
variables, which is dependent upon the number of measure-
ments, and linearization point. For further analysis, the state
model is discretized for sampling period Ts, and is given by

Xk = AdXk−1 +Bθuk, (10)

where Ad = I + TsAx, Bθ = TsBu, uk = V ′
in, and Ax and

Bu are obtained from (8).

Fig. 2. Eigenvalues plots of the system with five state variables.

The next step is to construct the observability matrix (O)

O =
[
Cx CxAd . . CxA

n−1
d

]⊤
, (11)

where n is the number of state variables.
The last step is to find out the eigenvalues of the observabil-

ity matrix given by |O − λI| = 0. The eigenvalues obtained
for the system depend upon the point of linearization. As
observed in (8) and (9), the term (Vc−RLIL) tends to almost
zero once the converter reaches a steady state.

To address this, the process of eigenvalue estimation is
carried out at all time steps (instead of one linearization point),
including transient and steady-state periods. This requires the
inductor current (IL) and capacitor voltage (Vc) to be estimated
beforehand. To address this, the power converter is simulated
in MATLAB Simulink. The converter response for a time
period of 4ms with a sampling time of 10ns is recorded
in terms of IL and Vc. These values are then used for the
estimation of eigenvalues at each of the operating points. The
eigenvalues plot is shown in Fig. 2. From the plot, it can be
inferred that only four eigenvalues are observable, whereas the
fifth eigenvalue remains close to zero, i.e., with a maximum
value of 10−12 and a minimum of 0. To exactly determine the
observable states, the above process is repeated considering a
new state vector X(1) = [iL, vc, θ1, θ2]

⊤ (without Rc). The
eigenvalue plot for the system is shown in Fig. 3, which
confirms their observability during the transient state. Conclu-
sively, through the observability analysis, the four observable
states (during both steady-state and transients) are selected,
which helps in the construction of the state vector X(1).

Post observability analysis, the next step is to estimate the
state vector using the EKF-based estimation. There are two
main steps in EKF, i.e., state predict and state update. The state
equation (10) is used for the state variable prediction (x̂−

k ),
whereas the covariance matrix (P−

k ) is predicted using [18]

P−
k = AdPk−1A

⊤
d +Q, (12)

where Q is the process noise covariance matrix, and Pk−1 is
the covariance matrix at previous sample. Post measurements
(zk), the state variable estimate (x̂k) and the process covari-
ance matrix (P ) are updated using [18]

x̂k = x̂−
k +Kk(zk − y), (13)



Fig. 3. Eigenvalue plots of the system with four state variables.

Fig. 4. Equivalent circuit of two converter modules connected in parallel.

Pk = P−
k −KkCxP

−
k , (14)

where Kk = P−
k C⊤

x (CxP
−
k C⊤

x + R)−1 is the Kalman filter
gain, and R is the measurement noise covariance matrix. The
initialization used and estimation performance of the EKF is
detailed in Section IV-A.

B. Double Parallelly Connected DC/DC Converter Modules

In the case of two parallel modules controlled with av-
erage control (i.e., the same duty cycle applied to both
converters), the output-side capacitors are fastly deteriorated
by the circulating currents. The modeling of this system is
complex compared to the single module. The two parallelly
connected converter modules, as shown in Fig. 4, are now
analyzed for observability. VPWM1 and VPWM2 are the
voltages at the output of the secondary-side diode rectifier
in the module. In this setting, the state vector is defined as
X(2) = [iL1, iL2, vc1, vc2]

⊤, with two inputs ([Vin1, Vin2]
⊤),

and three measurements (y = [Vo, iL1, iL2]
⊤). The dynamic

relations for the parallelly connected modules are given by
L1 0 Rc1C1 0
0 L2 0 Rc2C2

0 0 C1 C2(1 +
Rc2

RL
)

0 0 −Rc1C1 Rc2C2


︸ ︷︷ ︸

A1

Ẋ

=


−Req1 0 −1 0

0 −Req2 0 −1
1 1 0 −1

RL
0 0 1 −1


︸ ︷︷ ︸

A2

X +


ua

ub

0
0


︸ ︷︷ ︸

B

(15)

Fig. 5. Eigenvalue plot for the state vector.

Upon simplification, the state equation is obtained as

Ẋ = A−1
1 A2X +A−1

1 B (16)

The output equation is given by

y =

z/θ z/θ RLRc2

θ 1− Rc2

θ (Rc1 +RL)
1 0 0 0
0 1 0 0

X, (17)

where z = Rc1Rc2RL, θ = Rc1Rc2 + Rc2RL + RLRc1,
Req1 = 2n1d1Rmp1+Rlk1, Req2 = 2n2d2Rmp2+Rlk2, ua =
n1d1Vin1−2Vd1, and ub = n2d2Vin2−2Vd2. For the modules,
d, n, Vd, and Vin represent the duty cycle, transformer ratio,
diode voltage drop, and input voltage respectively.

Using (16), the augmented converter model is constructed
considering the additional parameters of the two modules. The
state vector for the augmented model is given by X(3) =
[iL1, iL2, vc1, vc2, L1, L2, C1, C2]

⊤. The entire process of dis-
cretization and estimation of eigenvalues (discussed in III-A)
is repeated. For this exercise, the L and C values in the second
module are assumed to be different i.e., L2 = 1.05L1, Rlk2 =
0.85Rlk1, C2 = 1.1C1, and Rc2 = 1.2Rc1. Using these values,
the two-parallel modules are simulated in MATLAB/Simulink
to get inductor currents, and voltage capacitors during transient
state of 4ms. The eigenvalue plot is shown in Fig. 5. It can
be observed here that the two eigenvalues are unobservable,
whereas the other six variables are observable. This suggests
that the exclusive inductor current measurements are vital in
[L1, L2] estimation. On the other hand, the output voltage
measurement, which corresponds to the cumulative effect of
the capacitors, is not sufficient for [C1, C2] estimation.

Similar to the single-module analysis, the EKF is imple-
mented using the augmented converter model and (17). The
validation of these findings and the EKF tracking performance
is detailed in Section IV-C.



IV. SIMULATION RESULTS

For validation of the analyses, a MATLAB/SIMULINK-
based simulation model is developed. The parameter specifica-
tion of the DC/DC converter module are detailed in Table I. In
this SIMSCAPE model, the DC/DC converter is simulated to
generate the measurements (zk) along with the input signals.
These inputs and measurements are passed on to the EKF
to estimate the parameters. The EKF is implemented in the
SIMSCAPE model using the ”MATLAB function” block.

For this simulation, it is assumed that the current and
voltage sensors are 99% accurate of the rated values and
the measurement reading is 1% error of the rated values
i.e., R = diag{0.712, 0.282}. The initial values are x0|0 =
[0, 0, 3.03× 104, 1.818× 104]⊤ and P0|0 = Q.

A. EKF Performance for single-module of DC/DC Converter

As discussed in Section III, the coefficient ∂vc

∂C = −Ga

RL
(Vc−

RLIL) tends to zero during the steady state, making C
unobservable, and it can only be observed during the transient
state. For this estimation, a train of control-induced duty-cycle
change is applied by continuously with d varying between
0.5 to 0.7 for every 2ms. As power transfer is controlled
for duty modulation of the input-side converter, the varying
duty cycle is used for pulse generation of the primary-side
H-Bridge. For these transient pulses, the simulation results
obtained are shown in Fig. 6. As observed, the EKF-estimated
inductor current (iLest

) and capacitor voltage (vcest) are in
close approximation to the measured signals (iLmeas , vcmeas).
This high accuracy of estimation is achieved as a combination
of the state-space model and signal measurements (Vo and iL).

The parameter estimation shows that the EKF is capable
of estimating the true L and C values, after the initial con-
verter starting transients. Secondly, as the duty-cycle change
is producing transient behavior, the EKF estimation uses an
average model (duty-cycle read as a numerical value), and the
sampling frequency of the sensors and the step size of the EKF
is equal to that of the converter switching frequency (80kHz).
This method of estimation can be used for periodic monitoring,
before actual operation. If applied during normal operation, the
output voltage variations will exceed the allowable limits.

B. Real-time estimation of Filter Inductance (L)

Inductors are not a major contributor to the overall faults in
power converters. However, for high-current applications, the
dissipation losses in the indicator tends to increase for higher
temperatures. Continuous operation impacts the magnetic wire
insulation culminating into an inter-turn fault. These faults
generally occur during the real-time operation. Thus, to predict
these fault, L must be estimated in real-time. For this real-
time estimation, the previously designed duty-cycle based
method is unacceptable, as it results in unacceptable output
voltage variation. For this estimation, the duty-cycle induced
switching transients are utilized by sensing the duty cycle
from the control board. For this purpose, for 80kHz switching
frequency, the sensor sampling rate of 0.25µs is used, i.e.,
50 samples in each switching cycle. The simulation results

TABLE I
PARAMETER SPECIFICATION OF SINGLE DC/DC CONVERTER

Parameter Specification Parameter Specification

Output Voltage 28 V Input Voltage 270 V
Rated Power 2.00 kW Inductor Current 71 A

Transformer ratio 1:6.5 Filter inductor 22 µH
Filter capacitor 0.22 mF Capacitor ESR 0.94 mΩ

Primary MOSFET 65 mΩ Diode drop 0.82 V
Inductor resistance 5 mΩ Duty cycle 0.7

Fig. 6. (a) Tracking performance of the state variables iL and vc. (b)
Estimation of L and C for a single module.

obtained are shown in Fig. 7. It can be observed here that
the EKF is now capable of estimating the switching ripple in
the inductor current and L value. When the inductance value
is decreased at t = 0.6s (emulating an inter-turn fault), the
inductor current’s peak-to-peak ripple changes. This updated
information is passed to EKF through measurements. This
transition invoke the EKF to estimate the new values of the
state vector including the inductor value.

C. EKF Performance for multiple DC/DC Converter modules

For validation of the analysis presented in Section III-B, two
parallelly connected DC/DC converter modules are simulated.
These two converters are operated with the same duty cycle
signal, and the duty cycle is continuously varied between
0.5 to 0.7 for every 2ms. The simulation result is shown
in Fig. 8. It can be observed here that initially the EKF
tracks L1, L2, C1, C2 perfectly. However, once the capacitance
value of the second module is changed from 0.24mF to
0.18mF, the algorithm reflects this change by equaling both
capacitance values (to 2mF) and their sum equal to the total
capacitance (4mF). This occurs due to the measurement of
common output voltage, which is truly a reflection of the
two module output voltages. Any capacitance change will be
reflected as an average effect of the two converters on the
output voltage. This observation is in line with the reduced
rank of eigenvalues, suggesting loss of observability of two
signals, i.e., C1 and C2 (discussed in Section (III-B). On
the other hand, the capacitance change has little impact on
the inductances’ tracking, which remains fairly constant. This



Fig. 7. (a) Change in inductor current ripple due to inductor change at 0.6s,
(b) Response of EKF based real-time filter inductance estimation.

Fig. 8. EKF tracking performance for two modules validating the inability
to accurately estimate the capacitance values post disturbance.

validates the fact that L1 and L2 are distinctly observable in
the double module configuration.

V. CONCLUSION

This paper explored the EKF-based parameter estimation of
full bridge DC/DC converter for single and multiple modules.
In single module analysis, it is observed that all the parasitic
resistances are lumped together in the state matrix, thereby
making it difficult to estimate them as state variables indi-
vidually. Using observability analysis, the unobservable states
are identified and segregated to form a state vector consisting
of observable states. For the state vector [il, vc, L, C]⊤, it is
observed that applying the control-side induced duty-cycle
transients helps in accurate estimation of L and C (during
the transient period). This method also shows that parameters
can be estimated using the average value of the duty cycle,
with the sensor sampling rate equal to the switching time
period. However, for real-time estimation, as no control-side
transients can be induced (to meet the operating voltage
allowable range), the sampling rate must be increased to reflect
the variation of the steady-state duty cycle signal (instead
of an average value). On the other hand, for two modules,
it is observed that using the common output voltage signal
results in loss of observability of output side capacitors. For
any perturbation in these capacitors, the algorithm fails to
distinctly identify the source of change. This suggests that
using individual capacitor voltage as measurements will result
in a higher rank and better observability.
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