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Abstract
The generation of time-series profiles of building operation requires expensive and time-
consuming data consolidation and modeling efforts that rely on extensive domain knowledge
and need frequent revisions due to evolving energy systems, user behavior, and environmen-
tal conditions. Generative deep learning may be used to provide an automatic, scalable,
data-source-agnostic, and efficient method to synthesize these artificial time-series profiles by
learning the distribution of the original data. While a range of generative neural networks
have been proposed, generative adversarial networks (GANs) and variational autoencoders
(VAEs) are most popular models; GANs typically require considerable customization to sta-
bilize the training procedure, while VAEs are often reported to generate lower-quality samples
compared to GANs. In this paper, we propose a network architecture and training procedure
that combines the strengths of VAEs and GANs by incorporating Regularized Adversarial
Fine-Tuning (RAFT). We imbue the architecture with conditional inputs to reflect ambi-
ent/outdoor conditions and operating conditions, and demonstrate its effectiveness by using
operational data collected over 585 days from SUSTIE: Mitsubishi Electric’s net-zero energy
building. Comparing against classical GAN, VAE, Wasserstein-GAN, and VAE-GAN, our
pro- posed conditional RAFT-VAE-GAN outperforms its competitors in terms of mean accu-
racy, training stability, and several metrics that ascertain how close the synthetic distribution
is to the measured data distribution.
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ABSTRACT
The generation of time-series profiles of building operation requires

expensive and time-consuming data consolidation and modeling

efforts that rely on extensive domain knowledge and need frequent

revisions due to evolving energy systems, user behavior, and en-

vironmental conditions. Generative deep learning may be used

to provide an automatic, scalable, data-source-agnostic, and effi-

cient method to synthesize these artificial time-series profiles by

learning the distribution of the original data. While a range of gen-

erative neural networks have been proposed, generative adversarial

networks (GANs) and variational autoencoders (VAEs) are most

popular models; GANs typically require considerable customization

to stabilize the training procedure, while VAEs are often reported

to generate lower-quality samples compared to GANs.

In this paper, we propose a network architecture and training

procedure that combines the strengths of VAEs and GANs by incor-

porating Regularized Adversarial Fine-Tuning (RAFT). We imbue

the architecture with conditional inputs to reflect ambient/outdoor

conditions and operating conditions, and demonstrate its effective-

ness by using operational data collected over 585 days from SUSTIE:

Mitsubishi Electric’s net-zero energy building. Comparing against

classical GAN, VAE, Wasserstein-GAN, and VAE-GAN, our pro-

posed conditional RAFT-VAE-GAN outperforms its competitors in

terms of mean accuracy, training stability, and several metrics that

ascertain how close the synthetic distribution is to the measured

data distribution.
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1 INTRODUCTION
Traditional processes for developing stochastic physics-based mod-

els of building operation are typically expensive and time-consuming,

as their formulation requires extensive domain knowledge, mining

of time-use surveys, and the implementation of computationally

intensive data formatting, calibration, and modeling procedures.

Moreover, such models require frequent revision due to the intro-

duction of new components or configurations into the system, such

as the replacement of appliances with energy-efficient variants or

as occupancy profiles evolve over time.

Deep generative models [5] offer a convenient automated alter-

native to this manual process by generating time-series profiles of

interest without extensive domain knowledge in a manner agnos-

tic to the sources of data (e.g. sensors, surveys, etc.) by learning

directly from the experimental dataset. The efficiency and scala-

bility of these models facilitates the generation of arbitrarily large

artificial datasets, which are very hard to obtain, especially for new

or experimental building energy systems.
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Figure 1: Overview and potential use-cases of the proposed generative modeling approach.

Natural use-cases for these generated datasets include their use

in the training and evaluation of data-driven forecasting mod-

els [28, 40], as well as in the direct sequence generation of stochastic

occupant behavior over specified time periods. Such tools are being

increasingly used in the building energy systems domain in the

design and operation of energy-efficient controllers [4, 20, 33]. Such

"synthetic" datasets can be used for a wide variety of purposes, such

as reducing overfitting in forecasting models [37], to evaluate the

robustness of building control systems [39], to enable the dissemi-

nation of anonymous data [43], and to identify potential systemic

malfunctions [19]. An overview of a typical generative modeling

pipeline and some popular use-cases are illustrated in Fig. 1.

Recent work in the building energy systems domain has shown

that deep generative models are effective at capturing the distri-

bution of single-output operational building profiles, including en-

ergy consumption [44, 48], energy yield [10], cooling load [13],

thermal comfort [8], and occupancy profiles [7]. A handful of

recent studies have also examined the construction of approxi-

mate multi-dimensional distributions of building performance pro-

files [14, 21, 50]. While most prior work has only assessed the intrin-

sic quality of the learned distributions or showed their usefulness as

a data augmentation tool for forecasting models [3, 12, 41, 45] and

controllers [14], some recent work has also showcased interesting

applications including fault detection [25, 26, 47], and controller

validation [21].

Most applications in the building energy systems domain are

based on either of the two most popular deep generative mod-

els: Generative Adversarial Networks (GANs) [15] and Variational

AutoEncoders (VAEs) [22], which are known to suffer from conver-

gence issues leading to mode collapse [36] and underfitting [46],

respectively. Even though GAN-based (e.g., Conditional GAN [21,

31, 48], Auxiliary Classifier GAN [16, 34, 48], TimeGAN [3, 14, 49]),

and VAE-based (e.g., Conditional VAE [12, 38, 42]) architectures

have been used to better handle the characteristics of the building

data of interest, their combination has not been well explored. Such

combinations have significant potential, given the proven effec-

tiveness of hybrid models that leverage the strengths of GANs and

VAEs [23, 24, 30]. Initial work in exploring these combinations in-

clude [35] which captured the distribution of energy consumption

and photovoltaic production profiles using a VAE-GAN [23], and

[50] which captured the distribution of solar irradiance time series

using a combination of an ID-GAN [24] and a DoppelGANger [27].

In this work, we introduce a new framework to generate condi-

tional multivariate time-series of building operation, which builds

on the benefits of VAEs and GANs, while addressing some of their

inherent drawbacks. Themain contributions of our work can be sum-

marized as follows: (i) we propose RAFT-VAE-GAN (or RAFT-VG

to be succinct): a new deep generative model and training proce-

dure to synthesize arbitrarily large multivariate building operation

time-series profiles, which hinges on VAE-based pre-training and

regularized adversarial fine-tuning (RAFT); (ii) we show that the

proposed framework provides a stable training procedure and al-

lows realistic approximations of the true data distribution; (iii) we

compare RAFT-VG with baseline generative models, and show that

our model outperforms the competing models in terms of similar-

ity with the ground-truth distribution and training stability; and,

(iv) we demonstrate the effectiveness of combining VAE-based pre-

training with GAN-based fine-tuning by studying the trade-off

between the amount of pre-training and fine-tuning.

The rest of the paper is organized as follows: Section 2 intro-

duces conditional generative modeling with VAEs and GANs, and

elaborates on their strengths and weaknesses. Section 3 describes

RAFT-VG: the new architecture we propose in this work to over-

come such weaknesses. Section 4 describes the dataset and the

metrics we used to validate our architecture, and presents the re-

sults of our validation experiments. Finally, Section 5 summarizes

the main findings of our work to discuss potential applications and

future directions.

Notations. We adopt standard notation for R𝑛 and Z𝑛 to represent

real-valued and integer-valued vectors, respectively. We denote

ground-truth data by 𝑥 ∈ 𝑋 , conditional variables 𝑠 ∈ 𝑆 , and la-

tent/nuisance variables by 𝑧 ∈ 𝑍 ; the uppercase notation implies

sets. Synthetic data are denoted by 𝑥 ∈ 𝑋 . Any boldface quan-

tity indicates a dataset or collection of individual variables, for

instance x := {𝑥}I for some index set I ⊂ Z. A multi-dimensional

Gaussian density function with mean 𝜇 ∈ R𝑛 and covariance ma-

trix Σ ∈ R𝑛×𝑛 is denoted by N(𝜇, Σ). By 𝑧 ∼ N(0, 𝐼 ), we mean

that the vector 𝑧 is drawn from the standard, multivariate normal

distribution. The expectation operator is given by E(·) and the

Kullback-Leibler divergence (KLD) between two distributions 𝜋1
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and 𝜋2 is written as KLD(𝜋1 | |𝜋2). We use ∥ · ∥2 ≡ ∥ · ∥ to denote

the 2-norm. The natural logarithm is denoted log(·) and base-10

logarithm log
10
(·).

2 PRELIMINARIES
In this section, we present a brief summary of conditional generative

modeling with VAEs and GANs. Throughout the paper, we may

omit the qualifier ‘conditional’ for simplicity, but unless specified,

by VAE and GAN we mean conditional VAE and conditional GAN.

Formally, the generative learning problem involves estimating

the underlying conditional distribution 𝑝𝑥 |𝑠 from joint data samples

of (𝑥, 𝑠). Under both approaches, a generative model implicitly

captures the distribution, while providing a method to synthesize

samples of the learned distribution.

2.1 Conditional VAEs
In conditional VAEs [22, 38], the generative model is specified

by the distribution 𝑝𝜃 (𝑥 |𝑠, 𝑧), where 𝑧 is sampled from a latent

prior distribution 𝑝 (𝑧). This implicitly specifies the conditional

distribution:

𝑝𝜃 (𝑥 |𝑠) =
∫

𝑝𝜃 (𝑥 |𝑠, 𝑧)𝑝 (𝑧) d𝑧.

In principle, the learning objective is to maximize the expected

log-likelihood, i.e.,max𝜃 E[log𝑝𝜃 (𝑥 |𝑠)]. However, this implicit con-

ditional distribution is generally intractable, which motivates the

introduction of a variational posterior 𝑞𝜙 (𝑧 |𝑥, 𝑠) that approximates

the actual posterior: 𝑝𝜃 (𝑧 |𝑥, 𝑠) = 𝑝 (𝑧)𝑝𝜃 (𝑥 |𝑠, 𝑧)/𝑝𝜃 (𝑥 |𝑠). This 𝑞𝜙 is

utilized in a variational lower bound of the expected log-likelihood,

also known as the evidence lower bound (ELBO):

E[log 𝑝𝜃 (𝑥 |𝑠)] ≥ E
[
log 𝑝𝜃 (𝑥 |𝑠, 𝑧) + KLD

(
𝑞𝜙 (𝑧 |𝑥, 𝑠)∥𝑝 (𝑧)

) ]
, (1)

where the expectation is computed with respect to 𝑧 ∼ 𝑞𝜙 (𝑧 |𝑥, 𝑠),
and (𝑥, 𝑠) are drawn from the data distribution. The parameters

(𝜃, 𝜙) of the generative model 𝑝𝜃 (𝑥 |𝑠, 𝑧) and variational posterior

𝑞𝜙 (𝑧 |𝑥, 𝑠) are jointly optimized to maximize the ELBO (1). Note that

the variational posterior is typically parameterized as a conditional

Gaussian: 𝑞𝜙 (𝑧 |𝑥, 𝑠) = N(𝑧; 𝜇𝜙 (𝑥, 𝑠), Σ𝜙 (𝑥, 𝑠)), with the mean vec-

tor 𝜇𝜙 and diagonal covariance matrix Σ𝜙 given by parametric

functions of (𝑥, 𝑠). With the typical assumption of a latent prior dis-

tribution being the standard Gaussian distribution, 𝑝 (𝑧) = N(0, 𝐼 ),
the KLD term in (1) is readily tractable and differentiable [22].

The variational posterior 𝑞𝜙 (𝑧 |𝑥, 𝑠) can be viewed as an encoder

that induces a probabilistic map from 𝑥 to a latent representation 𝑧,

conditioned on 𝑠 . The generative model 𝑝𝜃 (𝑥 |𝑠, 𝑧) can be viewed as

a decoder that recovers likelihoods for 𝑥 , conditioned on 𝑠 , from a

sampled latent representation 𝑧. This decoder is also commonly pa-

rameterized as a conditional Gaussian, 𝑝𝜃 (𝑥 |𝑠, 𝑧) = N
(
𝑥 ;𝑥𝜃 (𝑠, 𝑧), 𝐼

)
,

where the mean vector 𝑥𝜃 is a parametric function of (𝑠, 𝑧) and the

covariance is the identity matrix. This simplifies the first term of

the ELBO in (1) to be essentially a negative reconstruction loss, i.e.,

shift-scale of mean-square error (MSE):

E[log𝑝𝜃 (𝑥 |𝑠, 𝑧)] = −1

2

∥𝑥 − 𝑥𝜃 (𝑠, 𝑧)∥2 + 𝑐,

where 𝑐 is a constant that does not impact the optimization.

Given a trained VAE, the decoder can be used to generate syn-

thetic data by conditionally sampling from the model 𝑝𝜃 (𝑥 |𝑠, 𝑧).

This is done by drawing a latent vector 𝑧 from its prior distribution

𝑝 (𝑧) = N(0, 𝐼 ), and subsequently, for a given 𝑠 , employing the gen-

erative model to specify the distribution 𝑝𝜃 (𝑥 |𝑠, 𝑧) from which the

synthetic data should be sampled. For example, with the Gaussian

decoder described above, we generate the corresponding sample as

simply the mean vector 𝑥𝜃 (𝑧, 𝑠). This omits the variation implied by

the Gaussian decoder model, with only the sampling of 𝑧 providing

randomness to the sample generation.

2.2 Conditional GANs
In conditional GANs [15, 31], the conditional generator 𝐺𝜗 : 𝑆 ×
𝑍 → 𝑋 is trained in an adversarial framework that involves a

discriminator 𝐷𝜑 : 𝑋 × 𝑆 → [0, 1] that aims to distinguish between

genuine samples drawn from the actual data distribution versus

synthetic samples produced by the generator. The training process

is based on a min-max optimization problem given by

min

𝜗
max

𝜑
E
[
log(1 − 𝐷𝜑 (𝑥, 𝑠)) + log𝐷𝜑 (𝐺𝜗 (𝑠, 𝑧), 𝑠)

]
, (2)

where the latent variable is drawn from its prior 𝑧 ∼ 𝑝 (𝑧), and (𝑥, 𝑠)
are drawn from the data distribution.

For a fixed generator 𝐺𝜗 , the inner maximization of the GAN

objective given in (2) can be viewed as training the discriminator

to perform binary classification between sample pairs (𝑥, 𝑠) drawn
from the true data distribution versus pairs (𝑥, 𝑠), where 𝑥 has

been replaced by the synthetic samples produced by the generator

𝑥 = 𝐺𝜗 (𝑠, 𝑧). Indeed, the objective function for training the discrim-

inator is essentially the binary cross-entropy loss. In principle, for

the optimal discriminator on the inner maximization, the objective

for training the generator is the Jensen–Shannon divergence be-

tween the true data distribution and the distribution of the synthetic

pairs (𝑥, 𝑠) [15].
In practice, however, the min-max optimization of (2) is often

tackled with the heuristic method of alternating between stochastic

gradient ascent and descent steps for the inner and outer optimiza-

tions (or performing a few discriminator updates between each

generator update). This heuristic has both the practical benefit of

avoiding the computational cost of iterating the inner maximization

to convergence and empirically helps to stabilize the GAN train-

ing by avoiding vanishing or exploding gradients (see [1] which

investigates the fundamental GAN stability issues).

3 SOMETHING IN BETWEEN: RAFT-VG
For many natural data domains, GANs synthesize more realistic

samples compared to VAEs, as the discriminator serves as a learned

perceptual loss for training the generator. VAEs may be inherently

limited by the choice of the generative model, such as isotropic

Gaussian statistics (as implied by the MSE loss) being overly sim-

plistic and leading to blurrier samples. Conversely, GANs are noto-

riously difficult to train, due to the instability of adversarial opti-

mization, while VAEs are relatively straightforward. Thus, ideally,

one would wish to combine the perceptual quality of GANs with

the stability and ease of training of VAEs.

Our proposed architecture to merge the benefits of VAEs and

GANs is presented in Fig. 2. The proposed RAFT-VG comprises

a conditioned encoder, a conditioned decoder, and a conditioned

discriminator. The encoder takes an entire time-series profile 𝑥 as

3
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Figure 2: Two-phase training procedure for RAFT-VG. Dark
shading indicates frozen weights.

an input, along with a conditioning input 𝑠 which is appended to 𝑥 .

The encoder then generates mean and variance vectors that define

a probabilistic latent vector 𝑧, assumed to have been extracted from

a Gaussian distribution. The decoder converts this latent vector,

along with the appended conditioning input into a reconstructed

time-series profile 𝑥 . Rather than constructing a separate gener-

ator, we utilize the decoder in an overlapping role to also serve

directly as the generator. That is, one can randomly generate la-

tent variables 𝑧, which can be decoded to produce corresponding

𝑥 . By comparing with the true data 𝑥 and assigning plausibility

scores via the discriminator (which is also conditioned on 𝑠), we

incorporate the GAN philosophy into our proposed method. Rather

than incorporating the discriminator in an ad hoc manner, a major

contribution of this paper is to introduce a regularized adversarial

fine-tuning (RAFT) algorithm. The objective of regularizing the

weights of the decoder in the RAFT procedure promotes select-

ing decoder weights such that the encoder-decoder pair remain

‘close to’ inverse functions of each other, assuming the encoder

and decoder are sufficiently smooth; c.f. [6]. The quality of the

final decoded output is enhanced by fine-tuning the decoder (i.e.,

generator) by utilizing the discriminator.

To explain further, the training mechanism for the RAFT-VG is

composed of two decoupled phases since we have observed that,

in practice, simultaneously trying to train the VAE components

and the GAN components often requires significant manual hyper-

parameter selection and design effort. Therefore, the first phase

of the training, shown in the upper subplot of Fig. 2, freezes the

discriminator weights, and trains a classical conditioned VAE with

the building time-series profiles as described in section 2.1. This

phase of the training is stable, and at the end of the training, we ex-

pect that the encoder has learned a distribution that can effectively

project the time-series profiles to a reduced-dimensional latent

space, and that the decoder is a suitable inverse transformation that

lifts the latent vectors to well-reconstructed time-series profiles. In

the second phase of training as shown in the lower subplot of Fig. 2,

we freeze the encoder and train the decoder and the discriminator.

As explained in the previous paragraph, we use the decoder as a

conditional generator, and therefore, the training in this phase fol-

lows a similar regime to that discussed in section 2.2. However, we

make two major changes to improve GAN training stability while

maintaining the encoder-decoder consistency, and we call this the

RAFT procedure.

The first change is to incorporate a Wasserstein GAN loss for

the discriminator, which is an idea proposed in a widely adopted

architecture known as the Wasserstein GAN (W-GAN) [2] for ele-

vating GAN performance and stabilizing the training regime. The

W-GAN employs an alternative training objective given by

min

𝜃
max

𝜑
E
[
𝐷𝜑 (𝑥, 𝑠) − 𝐷𝜑 (𝐺𝜃 (𝑧, 𝑠), 𝑠)

]
, (3)

where the discriminator 𝐷𝜑 : 𝑋 × 𝑆 → [0, 1] should be constrained
to be 1-Lipschitz continuous. In principle, with the optimal dis-

criminator in the inner maximization, the objective for the outer

generator optimization becomes the Wasserstein distance between

the true data distribution 𝑝𝑥,𝑠 and that of the synthetic pairs (𝑥, 𝑠).
There are several approaches to enforce Lipschitz continuity on

the discriminator, such as weight clipping [2] or gradient penaliza-

tion [17]. We utilize the popular and effective method of spectral

normalization [32], which involves normalizing each weight matrix

with a running estimate of its largest singular value, in order to

approximately enforce 1-Lipschitz continuity.

The second change is motivated by a desire to maintain con-

sistency of the encoder-decoder pair. Since the encoder is frozen,

the encoding is fixed, but we allow the decoder weights to vary.

To prevent the decoder weights from changing to an extent that

they are too far to constitute an inverse function of the encoder, we

regularize the decoder weights. That is, we try to restrict 𝜃 to be

close to 𝜃★ such that the encoder-decoder pair remain capable of

reconstructing the inputs. In particular, we add an L2 regularizer to

the W-GAN loss (3), which yields our RAFT-VG loss for the second

phase:

min

𝜃
max

𝜑
E
[
𝐷𝜑 (𝑥, 𝑠) − 𝐷𝜑 (𝑥𝜃 (𝑧, 𝑠), 𝑠)

]
+ 𝜆∥𝜃 − 𝜃★∥22, (4)

where 𝜆 > 0 is a scalar, 𝜃★ denotes the weights of the decoder

obtained after the encoder-decoder training in the first phase, and

𝑥𝜃 (𝑧, 𝑠) is the output of the decoder, with the latent 𝑧 sampled from

its prior 𝑝 (𝑧) = N(0, 𝐼 ).

3.1 Related Conventional Approaches
Of course, we are not the first to investigate combining the benefits

of VAEs and GANs. Herein, we briefly summarize the most relevant

works and delineate how RAFT-VG is different and may have some

advantages over these previously proposed combinations.

In VAE-GAN [23], the authors introduce a discriminator during

VAE training such that it provides a learned perceptual loss to refine

the VAE. Unlike our RAFT-VG approach, the VAE-GAN trains all

three network components (i.e., the encoder, decoder, and discrimi-

nator) simultaneously in an adversarial training framework, which

makes it more susceptible to GAN-like training stability issues, as

we will report in the next section.

In an alternative adversarial approach shared between [29, 30],

the discriminator is applied to the latent representation and serves

4
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to approximate the KLD term of the ELBO loss in (1), which al-

lows for more general encoder architectures and latent prior dis-

tributions. Unlike RAFT-VG, the discriminator is connected to a

latent rather than a synthetic data sample. Another adversarial VAE

training approach [9, 11] applies the discriminator to distinguish

between pairs of data samples and the representations extracted

by the encoder versus synthetic samples and the corresponding

latent representations from which they were generated by the de-

coder. The architecture is a GAN trained similarly to a VAE, not a

combination of elements from VAEs and GANs.

TimeGAN [49] involves training an autoencoder, with a recur-

rent network architecture, that encodes data sequences into a se-

quential latent space, and a GAN model that aims to generate these

sequential latent representations. This structured approach for se-

quential data aims to enforce statistical consistency across temporal

transitions. In contrast, we did not apply recurrent architectures

in our approach, since we found our lower dimensionality and

sequence lengths to be manageable with less complex methods.

The ID-GAN framework [24] also takes a two-stage approach,

where the first stage trains a VAE, before applying adversarial train-

ing in the second stage. Their approach differs in that their second

stage discards the VAE decoder and instead trains a generator model

from scratch (in contrast to the decoder fine-tuning of our method),

which introduces significantly more variables for training.

4 CASE STUDY: SYNTHETIC DATA
GENERATION FOR SUSTIE BUILDING

4.1 Data Collection
SUSTIE is a next-generation office building with a total floor area

of approximately 6456 m
2
, designed to research and demonstrate

energy savings and workers’ health and comfort. The name SUSTIE

combines the words “Sustainability” and “Energy”. SUSTIE has

nine experimental rooms (offices), where around 260 office workers

work, as well as an open-feel atrium area, a cafeteria and a gym.

SUSTIE is the first building in Japan to achieve the highest level

of Japan’s net Zero Energy Building (ZEB) certification from the

Building-Housing Energy-efficiency Labeling System (BELS), the

highest level of CASBEE Wellness Office, a certification system

for health and comfort in Japan, and the platinum rank of WELL

certification
1
.

SUSTIE collects electrical energy, meteorological, indoor envi-

ronment, occupancy, and equipment operation data to analyze and

control energy consumption and comfort during building opera-

tions. The electrical energy is measured for each type of equipment

(air-conditioning, ventilation, lighting, hot water supply and ele-

vators) and for each room. The meteorological data are measured

by weather sensors installed on the roof of the building, including

outdoor temperature and humidity, wind speed and direction, rain-

fall, and solar radiation. The indoor environment is measured by

a total of 330 sensors including air quality sensors (temperature,

humidity, CO, CO
2
, pollen, formaldehyde, etc.) and illumination

level sensors. The number of people in each room is counted by

the access control system using card readers installed in each area.

Equipment operating data collected by the equipment controller

1
https://www.mitsubishielectric.com/en/about/rd/sustie/index.html

includes operating mode, temperature settings, measured temper-

atures, flow rates and light dimming rates. The data is collected

24 hours a day, with a sampling rate of 1 minute by the building

management system.

4.2 Experimental Setup
In this paper, we use a subset of this collected data: namely CO

2
,

along with power
2
consumed by hot water generation systems,

lighting, and ventilation. This dataset is down-sampled to obtain a

sampling rate of 10 min per sample by selecting the median value

in every 10 min for each signal; thus, we have 144 samples per

day for each of the 4 signals under consideration. We find this an

effective approach to tackle missing sensor values without imputing

or discarding data. The final dataset has a size of 585×144×4, since

we have 585 valid days worth of data. As multiple sensors measure

the CO
2
concentration, we average over sensors since they could

be placed in the same living space at different locations. We also

sum the power signals to compute the total power usage.

Inspired by the arguments made in [21], we choose the condi-

tional inputs to be: (i) a binary variable indicating whether a specific

day is a workday or a holiday; (ii) the median outdoor dry-bulb

temperature over 24 hr; (iii) the median outdoor relative humidity

over 24 hr; and, (iv) the maximum solar radiation over 24 hr. All

conditional inputs are normalized to lie with the range [0, 1]. Vapor
compression cycle variables are not selected as conditioning inputs

because the conditional inputs provided to the generator must be

decoupled from the building and cycle variables that are being con-

trolled. As our primary use case is in using deep generative models

that provide realistic scenarios for assessing the building control

performance of simulation models that include both building and

HVAC equipment dynamics, we restrict the conditioning inputs to

only include exogenous inputs to the overall system-of-systems.

As a result, we do not select the same conditioning inputs as those

of [21], such as room temperatures/humidities, unmet setpoints,

and cooling capacities.

In formulating these methods, we restrict ourselves to scalar con-

ditional inputs (e.g., the median temperature over a 24 hr period),

as opposed to vector conditional inputs (e.g., a vector containing

the temperature every hour) as this simplifies the specification of

the conditioning input at inference time due to the fact that only

a single value is required. Furthermore, imbalances in the prior

distribution of the training data (e.g., there are very few hot days)

can be easily compensated by increasing the weight to the loss func-

tion for under-represented condition samples, or oversampling the

underrepresented conditions during training to ensure they are ac-

curately represented in our model. Conversely, under-represented

conditions are more difficult to identify when using vector con-

ditioning inputs, as the data is generally more sparse due to the

higher dimension. In this case, identifying under-represented con-

ditions requires the use of dimensionality reduction techniques

(e.g., principal component analysis: PCA), which are generally less

interpretable than the median. Lastly, the use of scalar conditional

inputs greatly simplifies the network architecture and reduces the

overall parameter count, as we do not have to concatenate high

dimensional conditioning vectors to network layer inputs or add

2
We employ numerical differentiation to compute power from energy sensors.
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additional layers that project the high dimensional inputs to a lower

dimension prior to concatenation. For similar reasons, we do not

employ any positional encoding.

The encoder of the RAFT-VG has an input dimension of 𝐵 × 580,

where 𝐵 is the batch-size (we select 𝐵 = 128), and 580 = 144 × 4

flattened signals plus 4 conditional input scalars. The conditional

encoder has 3 hidden layers with 256 neurons per layer, activated by

smooth ELU functions (𝛼 = 0.1), and two outputs: a mean and a log

variance, both of which are 64-dimensional (i.e., the latent dimen-

sion of the VAE is 64). The conditional decoder of the RAFT-VG is

deeper, with 3 linear hidden layers followed up with 3 convolutional

layers of kernel widths 15, 7, and 5, respectively, to promote de-

coder outputs to be smooth, as we observed that the outputs of the

VAE may sometimes contain unwanted high-frequency oscillations

and jumps without convolutional filtering. Since our signals are all

non-negative, the output layer of the decoder is passed through a

ReLU layer, while all other layers in the decoder are activated by

Leaky ReLU functions (𝛼 = 0.1). The conditional discriminator has

an input layer and 3 hidden layers, all of which are regularized by

a spectral normalization layer, activated by Leaky ReLUs (𝛼 = 0.1),

and passed through a dropout layer with a rate of 0.3. The dropout

is a particularly effective tool in phase-2 training for the RAFT-VG

because it prevents the discriminator from overfitting. The out-

put dimension of the discriminator is 1. The choice of activation

functions and other hyperparameters are informed by performing

hyperparameter tuning on a 10% hold-out validation set.

In the first phase of training, we employ an Adam optimizer for

the VAE training with a learning rate of 10
−3
, and fine-tune the

decoder with a learning rate of 10
−5

and set Adam’s 𝛽1 = 0.5 in the

second phase. The discriminator is trained with RMSprop with a

learning rate of 10
−5
; these smaller learning rates affirm that the

phase-2 training is geared towards fine-tuning. The discriminator

is updated 5× for each decoder update and 𝜆 = 10. Both phases

are allotted 5000 epochs for training, with each epoch covering

the entire dataset via mini-batches. Our data loader is designed

to prevent the imbalance arising from fewer weekends compared

to weekdays, and therefore we over-sample weekend data based

on the binary conditioning input in each mini-batch to promote

balanced learning.

4.3 Performance Evaluations
4.3.1 Generation of Synthetic Sequences. We begin by showing

building time-series profiles generated over 24 hr for two condition-

ing inputs in Fig. 3. In the figure, the left subplot is conditioned on

a holiday and the sky is overcast: therefore, the conditioning inputs

have a low average temperature, low humidity, and low maximum

solar radiation over the entire day. Conversely, the right subplot

depicts a workday with considerably higher average temperature,

higher humidity, and much higher maximum solar radiation, in-

dicating a sunny day. The two measured data streams are shown

using blue dots, while the light pink lines are individual synthetic

data traces, and the pink band is a 95% confidence interval (CI)

calculated from the statistics of 1000 synthetic samples generated

by RAFT-VG.

The CIs clearly superimpose most of the measured data, indi-

cating that for both conditioning inputs, the synthetic distribution

learned by the RAFT-VG covers the measured data, indicating that

the distribution has been learned reasonably well. In addition, the

difference in the shapes of the CIs indicate that the conditioning

inputs influence the inferred distributions. The rise in the CIs for

carbon-dioxide levels during work hours in the right plot, in con-

trast with the relatively uniform CI on the holiday, indicates a good

correlation with learned distributions and measured data, as well

as with domain knowledge-based expectations. The single sharp

spike of hot water around 8AM on the workday (which does not

exist on holidays) is another example of the conditioning effects

having been learned well: the reason for this spike is because the

hot water used in the cafeteria for the day is boiled in the morning

and stored in a tank for use. We also note that the CIs for hot water

on the holiday (left subplot) exhibit many kinks, and do not vary

smoothly like the other CIs. As is evident from the corresponding

blue data dots, these kinks are caused by the fact that the use of

hot water over weekends and national holidays is highly irregular

and depends on individual behaviors, rather than synchronized

behaviors across the company. The learned distribution, in trying

to cover all the vagaries of individual behaviors, therefore deduces

that it is best to forego reconstruction accuracy (e.g. mean behavior)

and instead resorts to learning wide uncertainty bands around the

mean behavior.

4.3.2 Performance Comparison with Popular Generative Models.
For the purposes of comparison, we use three metrics. The first is

the normalized root-mean-squared error (NRMSE):

NRMSE(x, x̂) ≜ 1

𝑇
∥𝜇x − 𝜇x̂∥,

which attempts to quantify how well the synthetic data samples

agree with the measured data on average. Our second performance

metric is tailored to understanding how close the learned distribu-

tion, from which synthetic data is sampled, is to the measured data

distribution. To this end, we employ the KLD:

KLD(x, x̂) ≜ log

𝜎x
𝜎x̂

+
𝜎2x̂ +

(
𝜇x − 𝜇x̂

)
2

2𝜎2x
− 1

2

.

Finally, we investigate mode-collapse: a phenomenon often seen in

poorly trained GANs, where the generator samples from a distribu-

tion with a very restricted variance (hence, collapsed) and therefore

is only capable of generating extremely similar data sequences.

While it is not simple to quantify mode-collapse, one popular met-

ric is the Fréchet inception distance (FID) score [18]. Unfortunately,

calculating the FID score requires pre-trained Inception-V3 models

that are suited to image generation, not building time-series profiles.

This is why we use its precursor, the Fréchet distance (FD)

FD(x, x̂) ≜ ∥𝜇x − 𝜇x̂∥2 + ∥𝜎x − 𝜎x̂∥2

as our metric to ascertain mode-collapse, since it can be generalized

to wider types of data than just images. For all the above, 𝜇x denotes
the expected value of the true distribution 𝑝 (𝑥, 𝑠) and Σx is its

corresponding covariance matrix. The notation is consistent for the

synthetic distribution 𝑝 (𝑥, 𝑠) and its moments.

To compute these metrics, we evaluate a Monte–Carlo estimate

of the metric with the effects of the conditionals marginalized out.

For example, we first generate 1000 synthetic samples for each

(𝑥, 𝑠) ∈ x × s to compute the FD score for the entire dataset x,
6
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Figure 3: Measured and synthetic data with 95% confidence intervals for two sets of conditioning inputs. Time axis starts at 0:
midnight. HW: hot water. V: ventilation. L: lighting. Temperature is in degree-C, humidity in %, solar radiation in W/m2.

and then concatenate all the synthetic data samples to form the

synthetic dataset x̂ and compute the FD score for the pair x and x̂.
We then sum over every channel of 𝑥 to scalarize.

We compare the performance of our proposed RAFT-VG with

the performance of popular generative models like vanilla GAN,

Wasserstein-GAN, and VAE-GAN [23]. Note that we do not compare

against recurrent VAE or GAN architectures such as TimeGAN [49]

or ID-GAN [24] as we argue that we do not need to add the com-

putational overhead of recurrent layers for our specific problem

because of the following reasons: (i) we generate 24h building load

profiles at fixed sampling rate, that is, we have fixed-length se-

quences, so the power of variable-length sequence by recurrence

is unwarranted; (ii) we do not need sample-by-sample generation;

and, (iii) we do not generate long sequences and therefore, do not

need to share parameters across networks.

For fairness, the network size and depth are kept identical across

all paradigms, and randomized portions of the code are seeded

from the same initial seed, with identical latent dimensions as well.

We attempted to use identical optimizers with identical learning

rates, but this led to poor performance in VAE-GAN, GAN, and

W-GAN, so we changed those optimizers from Adam to RMSprop

and manually tuned learning rates until performance improved.

Since an objective of this paper is to demonstrate the difficulty of

training GANs and architectures that involve GANs, we did not

heavily customize each implementation. Instead, we attempted to

allot equal amounts of manual tuning effort to each competitor;

VAE and W-GAN notably required the least tuning effort.

The results of the comparison are summarized in Table 1. The

RAFT procedure clearly enhances the VAE-GAN performance, with

metrics reflecting both the accuracy of average fit (NRMSE) and

distributional fit (FD, KLD) being an order of magnitude better com-

pared to the best amongst its competitor algorithms. In particular,

the classical GAN shows the weakest performance, and the high FD

indicates mode-collapse, which we will investigate in more detail

Table 1: Performance Comparison

Network NRMSE (↓) FD (↓) KLD (↓)
VAE 2.77e-01 1.47e+03 2.29e+01

GAN 9.88e+00 1.01e+06 2.33e+04

W-GAN 1.97e-01 2.22e+03 2.15e+01

VAE-GAN 8.10e-01 1.19e+05 5.58e+01

RAFT-VG (ours) 7.07e-02 1.83e+02 2.06e+00

in Section 4.3.3. The VAE-GAN demonstrates slightly better per-

formance, but despite careful selection of its hyperparameters, it is

still often susceptible to mode-collapse since the discriminator does

not employ a Wasserstein loss. We have observed empirically that

training the encoder, decoder, and discriminator jointly often incurs

the same instability during training that we have come to expect

from the classical GAN. This is evident from the high FD score

and higher KLD score compared to W-GAN, classic VAE, and our

RAFT-VG. The VAE exhibits the next best performance, and is com-

parable to the W-GAN, supporting why combining the strengths of

these algorithms is expected to exhibit good performance, which

motivated the RAFT-VG. Wall-clock training times of all the models

considered in this work were similar.

4.3.3 Robustness to Mode-Collapse. While training the GAN and

VAE-GAN, we noticed that varying the network size or latent di-

mensions had a strong impact on the performance of the method,

with many configurations exhibiting mode-collapse. To answer

whether RAFT-VG exhibits mode-collapse with varying network

size, we vary the number of hidden nodes and the latent dimension

of the VAE component (equivalently, the input dimension of the

W-GAN component) over (64, 128, 256) and (16, 32, 64), respectively,

and compute FD scores of these variants’ performance with 1000

synthetic samples. We also compare these to the corresponding FD

scores produced by VAE-GAN, W-GAN, and vanilla GAN with the

7
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Figure 4: Robustness to mode collapse with varying hidden
nodes and latent dimension. Lower values indicate better
performance.

same network size alterations. Unlike in Section 4.3.2, we do not

customize hyperparameters of the VAE-GAN to result in good per-

formance; this test is conducted fairly by maintaining parity across

all networks. Recall that the larger the FD score, the more likely the

mode-collapse. The results of this investigation are illustrated via a

heatmap in Fig. 4, where larger FD scores are darker red and are

an indicator of mode-collapse. As we can see from this heatmap,

the RAFT-VG is most robust to size variation, and consistently gen-

erates low FD scores. W-GAN is a close second for every tuple of

hidden node size and latent dimension, and both VAE-GAN and

GAN generate FD scores that are at least an order of magnitude

larger, indicating the fragility of their training regimes unless a

specific set of (hard to determine) hyperparameters are selected: a

task which requires significant manual tuning that our RAFT-VG

does not.

4.3.4 Trading-off VAE Pre-training vs. W-GAN Fine-tuning. To un-

derstand the importance of the VAE component versus the discrimi-

nator component in terms of generative modeling performance, we

run a series of experiments where we vary the ratio of pre-training

and fine-tuning iterations on a testing set of data that was hidden

during training. With 10000 total training iterations allowed to the

RAFT-VG, we allot 1000, 2500, 5000, 7500, and 9000 iterations to

the VAE; see NRMSE and KLD performance in Fig. 5. We observe

that there is a clear benefit to letting the VAE component train

well, as can be seen by the consistently low KLD values for RAFT-

50/50, RAFT-75/25, and RAFT-90/10, compared to when the VAE is

trained for less than 50% of the total iterations. However, the RAFT

procedure certainly helps improve performance, as can be seen

by the ‘VAE’ bar, which is effectively RAFT-100/0: that is, entirely

Figure 5: Effect of VAE pre-training vs. WGAN fine-tuning on
NRMSE and KLD. ‘WGAN’: RAFT-0/100; ‘VAE’: RAFT-100/0.
Lower values indicate better performance.

training the VAE with no GAN component results in significantly

worse generalization performance. In fact, the best performance in

terms of KLD is exhibited by RAFT-75/25, where the discriminator

was only trained for 2500 iterations. Considering both NRMSE and

KLD, RAFT-50/50 exhibits the best performance, demonstrating

once again the effectiveness of merging VAEs and GANs with the

RAFT procedure.

5 CONCLUSIONS
In this paper, we presented a regularized adversarial fine-tuning

(RAFT) procedure to combine the advantages of two widely used

generative modeling approaches: VAEs and GANs. We demon-

strated, on data collected from a commercial sustainable building

over 18 months, that our proposed RAFT-VG architecture provides

realistic synthetic data conditioned on environmental and opera-

tional conditions, has a simple training procedure that (empirically)

trains well without significant manual effort expended for selecting

hyperparameters, and is more robust to mode-collapse compared

against other state-of-the-art algorithms.

We showed our framework to be able to generate daily building

operation profiles with a resolution of 1 sample every 10 minutes;

however, if required by specific downstream applications, we could

generate time series with a finer resolution after retraining the

model on higher frequency sensor data. A potential limitation of

our framework is that it is not based on recurrent layers. This might

become an issue for real-time applications — where one often needs

to generate realistic time-series profiles on a sample-by-sample

basis — and for the generation of very long time series — where

the lack of recurrent layers might need to be compensated by an

increase in model size. Our future work will involve validating

stochastic energy-optimal control policies by leveraging these syn-

thetic sequences.
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