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Abstract

Automation in the food-serving industry has challenging requirements. The article deals with
the application of vision-guided food assembly of lunch box containers by robot teaching from
a demonstration of a given target composition for the container. Vision guidance is used for
parsing the target composition, bin picking with instance segmentation, and computing pose
information for similarity-based assembly for food serving with tracking of containers on a
moving conveying system. A control system based on learning from demonstration technique
is employed in the object frame for similar pose object dropoff of the grasped item for assembly.
Integration of vision-guided robot control into high-speed automated food assembly can be
highly productive. A pilot experiment scenario for automated food assembly demonstrates
the functionality of the vision-guided food-serving system.
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Abstract— Automation in the food-serving industry has chal-
lenging requirements. The article deals with the application of
vision-guided food assembly of lunch box containers by robot
teaching from a demonstration of a given target composition
for the container. Vision guidance is used for parsing the
target composition, bin picking with instance segmentation, and
computing pose information for similarity-based assembly for
food serving with tracking of containers on a moving conveying
system. A control system based on learning from demonstration
technique is employed in the object frame for similar pose
object dropoff of the grasped item for assembly. Integration
of vision-guided robot control into high-speed automated food
assembly can be highly productive. A pilot experiment scenario
for automated food assembly demonstrates the functionality of
the vision-guided food-serving system.

I. INTRODUCTION

Lunch boxes play a vital role in the food culture of Asian
markets and have gained immense popularity as a take-out
meal [1]. Several million lunch boxes are produced and
consumed daily in Japan. For example, Bento, a Japanese
lunch box, while portable and convenient, is also intended
to be visually appealing. These lunch boxes are typically
assembled by human labor. The workers identify individual
food items in various bin containers and assemble a pre-
determined pattern by picking and placing (Figure 1). The
food industry demands automation for lunch box packaging
to reduce labor costs and cater to growing demands. There
are many challenges for automation in this sector. In this
article, we focus on robotic systems and present a pipeline
(Figure 2) for visually guided automated assembly of lunch
boxes given a single target composition of an assembled
lunch box. While a typical operation for human laborers,
it presents many difficulties for a robotic system [2], requir-
ing planning, dexterous manipulation, and robust perception
capabilities. Generalization is a primary challenge, and we
present a solution that can work with various food items
using feature embeddings without requiring large annotated
datasets. Another critical aspect of Bento packaging is the
visual appeal, and we match the target composition with
learned primitives for dropoff with relative pose estimation.

II. METHOD

A. Perception of Target Composition

The target composition comprises a manually assembled,
visually appealing demonstration of a lunch box containing
food items—for example, a typical customer order. There are
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Fig. 1.
operations to assemble lunch boxes. Source: YouTube -“How a Train Bento
Box is Made in Japan”.

Visualization of a typical factory scenario of food handling

two main components for performing automated parsing of
the target composition: segmentation and feature extraction.
A Fully Convolution Network (FCN) can be used for image
segmentation tasks. Mask RCNN [3] is an extension of
Faster RCNN, which can be used to segment food items.
These methods require labeled datasets. For generalization,
we use a zero-shot learning method [4]. Figure 3(a) shows
some example segmentation masks for a target composition,
where the model learned a general notion of segmenting
objects. Segmented objects are then encoded with a backbone
network to n-dimensional normalized embeddings as feature
vectors. Residual networks [5] are popular backbones to ex-
tract instance color features. PointNet [6] can generate latent
representations using raw point clouds from the segmented
masks. These embeddings are utilized to associate objects for
bin picking and embeddings can be combined in the feature
space to achieve robustness.

B. Bin Picking

Once the target composition is parsed, the next step
involves picking food items with a robot from the bin
containers. Few shot instance segmentation [7] method can
be used to identify a best pickable instance from a bin full
of items Figure 3(c). A grasp detection approach [8], [9] can
be utilized for grasp selection to pick the desired instance
with a robot using motion planning (Figure 3(c)).

C. Assembly

Our automatic assembly framework aims to replicate the
target composition using identical items and place them
in the same pattern as demonstrated. Maximizing Cosine-
similarity in the embeddings space can associate the instance
to grasp with items parsed from the target composition, and
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Fig. 2. Visually guided food assembly pipeline.
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we calculate a pose difference error using sample consensus
initial alignment (SAC-IA) [10]. The registration provides
an orientation difference for the object’s placement. We
compute the destination position as a composition of rigid
body transformations between a mobile frame unambigu-
ously attached to the lunch box and the relative pose of
each respective item with respect to the box, as observed
in the demonstration. The mobile frame is detected by an
overhead camera in the color space using binary thresh-
olding and geometry fitting. The grasp pose of each item
is computed based on the initial pose to which a suitable
motor skill is added (section II-D). We favor grasp poses
with vertical picks to minimize bin disturbance Figure 3(d).
Once an item is picked, our system computes the destination
position of each item by minimizing the signed Hausdorff
distance of the corresponding registered 3D points of the bin.
Dynamical movement primitives (DMP)[11] are then used to
compute a trajectory for placing the food items for lunch box
assembly. Our system generates robot trajectories with fixed-
time execution and, thus, simplifies the lunch box tracking
problem, as the motion of the arm may interrupt the camera’s
line of sight, and it also allows us to schedule the moving
speed of the conveyor belt. Based on the current pose of the
box and a controlled conveyor speed, the system schedules a
robot trajectory that will rendezvous with the lunch box for
object dropoff at the destined pose.

D. Learning Motor skills for food placement

Specific food items must be handled using particular
manipulation techniques. Consequently, we use Dynamic
Movement Primitives (DMPs) (see [11] for more details) to
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Pilot. (a) Target composition parsing. (b) Assembly System. (c) Perception. (d) Bin Picking. (e) Robot learned dropoff. (f) Completed assembly.

generate suitable trajectories specific to each food class (i.e.
scooping, pinching, sliding etc.). For learning the motor skills
for the placement of different food items, kinesthetic demon-
strations are provided using the robotic arm for individual
food items given a target composition. These demonstrations
are used to learn DMPs which are parameterized by the goal
pose for the placement of the food item. During test time,
once the goal pose is obtained from the vision system, a new
DMP (corresponding to the style of a particular food item)
is computed online that is used to move the robot arm for
placement in the corresponding bin (Figure 3(e and f)).

ITI. DISCUSSION AND CONCLUSIONS

We deployed our system using a Kinova Gen3 robot arm
and bins of assorted food items. Each bin is observed using
an RGB-D camera, while an overhead camera tracks lunch
boxes moving on a conveyor belt. We limit the scope of
food items graspable with a parallel jaw gripper. The most
significant source of errors was object slip during picking
and, to a lesser degree, during transport. The source of these
errors was the grasping controller enforcing gentle clamping
forces on the food items, a concept we call critical grasping.
We theorize that possible instrumentation of the gripper with
tactile sensors may help detect and correct slipping with
closed-loop manipulation. We report on the challenges and
solutions encountered while designing and deploying a self-
contained system for the robotic assembly of food platters.
We discuss various machine vision approaches and suitable
trajectory generators for automated lunch box assembly from
a target composition. Finally, we present a pilot experiment
scenario for automated food assembly, which demonstrates
the functionality of the vision-guided food-serving system.
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