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Sample quantile-based programming for non-convex separable chance
constraints

Abraham P. Vinod∗ and Stefano Di Cairano

Abstract— We propose a sampling-based approximation to
non-convex, separable, chance constrained optimization prob-
lems using sample quantiles. The proposed approach does not
require any prior knowledge of the distribution or the moments
of the uncertainty, and accommodates chance constraints that
are non-convex in the decision variables. We prescribe the finite
number of samples and the tightening necessary to produce a
feasible solution to the original chance constrained optimization
problem with bounded suboptimality. The proposed approx-
imation has a low computational cost since the number of
sample-based constraints does not grow with the number of
samples, and the number of samples needed is independent of
the number of decision variables. We show the effectiveness of
the proposed solution in a stochastic motion planning problem
with non-convex obstacle avoidance constraints.

I. INTRODUCTION

Chance constrained programming is a mathematical
framework for decisions under stochastic uncertainty [1], [2].
In these optimization problems, the choice of the decision
variables must ensure that the likelihood of violation of
constrains remains below a (small) pre-specified threshold. In
contrast to their robust counterpart (where the decisions are
made based on the worst-case realization of the uncertainty),
allowing a (small) likelihood of constraint violation typically
yields significant improvements in the optimal value [1].
We focus on chance constrained programs with constraints
that are non-convex in the decision variables, and no prior
knowledge is available about the distribution or the moments
of the uncertainty. We propose a tractable algorithm based
on sample quantile functions that guarantees feasibility and
bounded suboptimality with a finite number of samples.

Existing approaches for chance constrained programming
can be split into two groups — sample-free approaches and
sample-based approaches. Sample-free approaches assume
that the information on the distribution or the moments of
the uncertainty is available a priori, and use the informa-
tion to inner-approximate the feasible set via non-stochastic
constraints. Examples of such approaches include quantile-
based reformulations [3], [4], moment-based approaches
like the Chebyshev-Cantelli bound [5], and convexification
using Bernstein approximation [6]. Sample-free approaches
typically produce convex approximations for computational
tractability. Consequently, they impose structural assump-
tions on the optimization problem and on the stochastic
nature of the uncertainty [1], [2]. Sample-based approaches,
on the other hand, replace the chance constraint with a
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collection of constraints that are evaluated at the available
samples of the uncertainty. The samples of the uncertainty
may be collected before or at runtime. Unlike sample-free
approaches, sample-based approaches do not require any
prior knowledge of the stochastic uncertainty and typically
require less restrictive structural assumptions on the problem.

Sample-based approaches can be further classified based
on the enforcement of the sample constraint into two groups
— all-sample and fraction-sample approximations.

All-sample approximations require the satisfaction of the
constraints at all realizations [1], [7]–[10], and control the
probability of constraint satisfaction by determining the
number of samples considered. All-sample approximations
typically inherit the structural properties of the original
chance constrained program including convexity and dif-
ferentiability [1], [8]–[10]. In [8], finite lower bounds on
the samples are provided for the case where the cost and
the constraint functions in the chance constrained program
are convex. However, these approaches typically return con-
servative, i.e. suboptimal, solutions and are sensitive to
outliers. As an alternative, sample-and-discard approaches
have been proposed that further lower the optimal value by
trading-off its feasibility [8]–[10]. For the more general non-
convex setting, bounds on the samples are obtained from
statistical learning theory [7], though the resulting sample
bounds are hard to compute in practice [9]. In [9], [10],
the scenario optimization was generalized to handle non-
convex costs and constraints. While the setting considered
in [9], [10] is more general than the setting considered in
this paper, our proposed approach has significantly lower
computational burden — the number of constraints in our
proposed approximation is independent of the number of
samples, the minimum number of samples needed by the
approximation is independent of the number of decision
variables, and our approach does not require solving multiple
sample approximations.

Fraction-sample approximations control the probability
of constraint violation using the fraction of the sample
constraints that are allowed to be violated [1], [11]–[14].
The computed optimal value is less susceptible to the
outliers among the drawn samples of the uncertainty as
compared to the all-sample approximations. A popular ap-
proach in fraction-sample approximation relies on mixed-
integer programming formulations [1], [11], [12]. How-
ever, mixed-integer-based approaches become computation-
ally prohibitive with a large number of samples. Recently,
two fraction-sample approximations were proposed that do
not require mixed-integer reformulations [13], [14] In [13],



the authors approximate the chance constraint using the em-
pirical characteristic functions and impose convexity assump-
tions on the chance constraints for the sake of tractability.
In [14], the authors use a smoothed sample quantile function
to obtain a (possibly non-convex) nonlinear program for
a chance constrained program with differentiable cost and
constraints, and compute an approximate solution using trust-
region methods. Compared to [13], [14], our approach does
not impose any structural restrictions on the original pro-
gram (specifically differentiability or convexity), guarantees
feasibility, and provides a suboptimality bound.

The main contribution of this work is a fraction-sample
approximation for non-convex separable chance constrained
programs based on the sample quantile function. The pro-
posed approximation does not require any prior knowledge of
the distribution or the moments of the uncertainty, and does
not impose any hard structural assumptions on the problem
such as differentiability or convexity of the cost and the con-
straint functions. We use the Dvoretzky–Kiefer–Wolfowitz
inequality to arrive at the finite sample lower bound that
guarantees feasibility and bounded suboptimality of the ap-
proximate solution, in the considered general setting. The
proposed reformulation is less susceptible to outliers be-
cause of its fraction-sample nature, preserves the structural
properties of the original chance constrained program, and
yields a suboptimality bound on the computed solution.
Thus, our approach retains the advantages of both all-sample
and fraction-sample approximations for non-convex chance
constrained programs with separable constraints, without
their major limitations.

II. PRELIMINARIES & PROBLEM STATEMENT

We employ the following notation throughout the paper:
N[a,b] denotes the interval of natural numbers between a, b.
We denote random vectors in bold, the Euclidean norm with
‖ · ‖, the n-dimensional identity matrix as In, and 0n and
0n×m as a vector and matrix of zeros respectively.

A. Sample distribution and quantile functions

Consider a random variable x ∈ R with probability
measure Px. For any x ∈ R and p ∈ [0, 1], the distribution
function Φx and the quantile function Qx of x are

Φx(x) = Px{x ≤ x}, (1a)
Qx(p) = inf{x ∈ R : Φx(x) ≥ p}. (1b)

Let
{
x
(j)
sample

}M
j=1

be M ∈ N samples of x drawn

according to Px. For any x ∈ R and p ∈ [0, 1], the
corresponding sample distribution function and the sample
quantile function of x are

Φ̂Mx (x) ,
1

M

∑M

j=1
I{x(j)sample ≤ x}, (2a)

Q̂Mx (p) , inf{x ∈ R : Φ̂Mx (x) ≥ p}. (2b)

Here, for each j ∈ N[1,M ], the indicator function I{x(j)sample ≤
x} = 1 when x(j)sample ≤ x, and is zero otherwise.

Lemma 1. [15, Lem. A.1.1] For any x ∈ R and p ∈ [0, 1],
Φx(x) ≥ p if and only if x ≥ Qx(p), and x ≥ Q̂Mx (p) if
and only if Φ̂Mx (x) ≥ p.

We will use Lemma 1 to reformulate constraints on
distribution functions as constraints on quantile functions.

Lemma 2 (DVORETZKY–KIEFER–WOLFOWITZ [16, SEC.
2.3.2]). Let x have a continuous distribution Φx. Then,
for any ε > 0 and Φ̂Mx defined using M i.i.d. samples,
P
{

supx∈R |Φx(x)− Φ̂Mx (x)| > ε
}
≤ 2 exp(−2Mε2).

Lemma 2 characterizes an exponential decay (with respect
to M ) in the probability that the maximum pointwise differ-
ence between the sample and the true distribution exceeds
some ε > 0.

B. Problem statement

Consider the following, possibly non-convex, chance con-
strained optimization problem,

minimize f0(z) (3a)
subject to z ∈ Z, (3b)
∀i ∈ N[1,N ], Pw{fi(z) + gi(w) ≤ 0} ≥ δi. (3c)

Here, z ∈ Rnz is the decision variable, Z ⊂ Rnz is a set
of deterministic constraints on z, w ∈ Rnw is the random
vector with an unknown probability measure Pw, fi : Rnz →
R, ∀i ∈ N[0,N ] and gi : Rnw → R, ∀i ∈ N[1,N ] are
known functions, and δi ∈ (0, 1) are known risk thresholds.
In the literature, (3c) is commonly known as a separable
probabilistic constraint [1, Sec. 4.3].

We make the following assumption on fi, gi for the well-
posedness of (3), see [1, Sec. 5.1] for more details, and for
enabling the application of Lemma 2.

Assumption 1. For each constraint i ∈ N[1,N ], fi is
continuous and gi(w) has a continuous distribution function.

The all-sample approximation of (3) solves

minimize f0(z) (4a)
subject to z ∈ Z, (4b)

∀i ∈ N[1,N ] fi(z) + max
j∈N[1,M]

gi

(
w

(j)
sample

)
≤ 0. (4c)

By (2a), (4c) is a reformulation of the constraint {z ∈
Rnz : Φ̂Mfi(z)+gi(w)(0) = 1}. The main advantage of (4)
is that it inherits the structural properties of fi. However, (4)
is highly sensitive to outliers in the drawn samples of w,
and typically return a conservative, i.e., suboptimal, solution
to (3). To mitigate the conservativeness, sample-and-discard
approaches lower the optimal value by reducing δi, thereby
trading-off its feasibility [8], [9].

Instead, the fraction-sample approximation of (3) is

minimize f0(z) (5a)
subject to z ∈ Z, (5b)

∀i ∈ N[1,N ] Φ̂Mfi(z)+gi(w)(0) ≥ ∆i. (5c)



We refer to ∆i ∈ [0, 1] as the sample risk thresholds. When
∆i = δi for each i ∈ N[1,N ], the optimal solution of (5)
approaches the optimal solution of (3) as M → ∞ under
Assumption 1 [1, Sec. 5.1]. By construction, (5c) requires
fi(z) + gi

(
w

(j)
sample

)
≤ 0 only for a subset of samples

in N[1,M ] [11]–[14]. Thus, (5) does not suffer from the
drawbacks of (4), since the solution of (5) has a lower
sensitivity to the sample outliers with higher M .

A popular approach to solve (5) is via a mixed-integer
reformulation of (5c) based on (2a). Existing works [11],
[12] use a binary variable for each sample to encode the
satisfaction of the constraint fi(z) + gi

(
w

(j)
sample

)
≤ 0, and

constraint the sum of the resulting binary variables be no
smaller than d∆iMe. These approaches approximate (5c) as

1

M

∑M

j=1
I{fi(z) + gi

(
w

(j)
sample

)
≤ 0} ≥ ∆i. (6)

However, the resulting mixed-integer programs are compu-
tationally expensive to solve, and impractical for large M .

The main goal of this paper is to solve (3) by com-
bining the strengths of the formulations (4) and (5), while
overcoming some of their respective limitations. Sampling-
based approaches must contend with the possibility that we
can obtain a very poor approximation of (3) due to the
drawn set of samples [8], [12]. Similarly to [8], the proposed
approximation must guarantee that the probability of such
an (unlucky) event is below a user-specified probability of
unreliability β ∈ (0, 1).

Problem 1. Given a user-specified probability of unreliabil-
ity β ∈ (0, 1), prescribe a sufficient number of samples M
and appropriate sample risk thresholds ∆i to obtain a well-
defined sample quantile function-based approximation of (3).
Additionally, every feasible solution of the approximation
must be feasible for (3) with a probability 1− β.

Apart from Problem 1, we will also compute a bound on
the suboptimality of a solution that solves the approximation.
In what follows, we will use gi to denote gi(w) for brevity.

Remark 1. Despite a relatively strong assumption of sepa-
rability in the chance constraints, we emphasize that fi and
gi can be non-convex in z and w respectively, unlike some of
the existing approaches [8], [11]. This enables the use of our
approach in tackling non-convex motion planning problems
under uncertainty.

III. SAMPLE QUANTILE-BASED PROGRAMMING

To address Problem 1, we first propose a sample quantile-
based approximation of (3). Next, we show that the feasible
set defined by the chance constraints can be inner- and outer-
approximated using the level sets of the sample quantile
functions with a user-specified probability of reliability.
Finally, we use the set approximations to compute a feasible
solution of (3), and conclude with a discussion of various
features of the proposed approach.

A. Sample quantile-based approximation of (3)

Consider the following approximation to (3),

minimize f0(z) (7a)
subject to z ∈ Z, (7b)

∀i ∈ N[1,N ], fi(z) + Q̂Mgi
(∆i) ≤ 0. (7c)

Given ∆i, the constraints (7c) are deterministic as (7c) de-
pend only on the samples of w. (7) can be solved by any off-
the-shelf nonlinear optimization solver. While our approach
does not require it, (7) also permits exploiting additional
properties of fi such as differentiability and convexity.

The motivation for (7) comes from the observation that,
using Lemma 1 and (1), the chance constraint (3c) is
equivalent to the constraint,

∀i ∈ N[1,N ], fi(z) +Qgi
(δi) ≤ 0. (8)

Next, we formalize the relationship between (5) and (7)
in Proposition 1 (see Appendix for a proof sketch). Two
optimization problems are equivalent, if the solution of one
solves the other, and vice versa [17].

Proposition 1. Problems (5) and (7) are equivalent.

We highlight two advantages of (7) over the all-sample
approximation (4) and the mixed-integer reformulation of
(5). First, unlike (4), the sensitivity of the solution of (7)
to the outliers decreases with increasing M . Second, unlike
the mixed-integer reformulation of (5) using (6), (7) does
not incur any additional computation cost for dealing with
the fractional-sample constraint (5c) since Q̂Mgi

(∆i) can be
pre-computed before solving (7).

B. Tuning sample-based chance constraint approximations

The sample quantile-based approximation (7c) has two
parameters, M and ∆i. We now propose a tuning strategy for
these parameters to obtain inner- and outer-approximations of
the chance constraint (3c). Later, we construct a safe approx-
imation of (3) using the inner-approximation, and compute
the suboptimality bound using the outer-approximation.

Consider the feasible set defined by N chance constraints
(3c) with δi ∈ (0, 1) for all i ∈ N[1,N ],

C =
{
z ∈ Rnz : Pw{fi(z) + gi(w) ≤ 0} ≥ δi, ∀i ∈ N[1,N ]

}
.

Proposition 2. Given a probability of unreliability β ∈
(0, 1). Then, with probability greater than 1− β,

C ⊇
⋂

i∈N[1,N]

{
z ∈ Rnz : fi(z) + Q̂Mgi

(∆inner
i ) ≤ 0

}
, (9a)

C ⊆
⋂

i∈N[1,N]

{
z ∈ Rnz : fi(z) + Q̂Mgi

(∆outer
i ) ≤ 0

}
, (9b)

where

∆inner
i = δi +

√
ln(N) + ln(1/β)

2M
∈ (δi, 1], (10a)

∆outer
i = δi −

√
ln(N) + ln(1/β)

2M
∈ [0, δi), (10b)



provided the number of samples available M satisfies
M ≥ Mmin , (ln(N) + ln(1/β)) /

(
2∆2

min

)
, where

∆min = min

(
min

i∈N[1,N]

(1− δi), min
i∈N[1,N]

δi

)
∈ (0, 1).

Proposition 2 (see Appendix for a proof sketch) provides
a sufficient bound on the number of samples Mmin as a
function of the number of constraints N , probability of un-
reliability β, and risk thresholds δi. It also prescribes sample
risk thresholds ∆inner and ∆outer that can inner-approximate
(9a) and outer-approximate (9b) the set of decision variables
that satisfy the constraint set C .

Remark 2. (SIMPLIFIED LOWER BOUND ON M ) For δi ∈
[0.5, 1) for all i ∈ N[1,N ],

Mmin =
ln(N) + ln(1/β)

2
(
1−maxi∈N[1,N]

δi
)2 . (11)

Recall that the finite sample lower bound in [8] for solving
(3) with convex fi is M convex

min = 2
1−δ (ln(1/β)+nz). Observe

that M convex
min has a linear dependence on the number of

decision variables nz . In contrast, despite the possibility of
non-convex fi in (3), Mmin is independent of nz . Both Mmin

and M convex
min have a logarithmic dependence on 1/β. The

dependence of Mmin on δ degrades to a squared dependence
on 1/(1−δ) from a linear dependence. Thus, as δ approaches
one, the rate of increase in M convex

min is smaller than Mmin,
which may be attributed to the structural assumption of
convex fi used to derive M convex

min .
We conclude by observing that a sample-based, inner-

approximation of C is non-empty only if δ ∈ (0, δmax], where

δmax , 1−
√

ln(N)+ln(1/β)
2M , for given N , M and β by (10a).

C. Feasible solutions of (3) with suboptimality bounds

Motivated by Proposition 2, we consider the following
optimization problems to address Problem 1,

(Safe-Approx) :

min. f0(z)
s. t. z ∈ Z,

fi(z) + Q̂Mgi
(∆inner

i ) ≤ 0

(Unsafe-Approx) :

min. f0(z)
s. t. z ∈ Z,

fi(z) + Q̂Mgi
(∆outer

i ) ≤ 0

where the sample risk thresholds ∆inner
i ,∆outer

i are selected
based on (10), and M ≥Mmin.

We will use the solution of (Safe-Approx) to obtain
a suboptimal solution of (3), and use the solution of
(Unsafe-Approx) to provide a bound on the suboptimality.
We provide the justification for these steps in Theorem 1.

Theorem 1. For any user-specified probability of unreli-
ability β ∈ (0, 1), the following statements are true with
probability 1− β:
a) Any feasible solution of (Safe-Approx) is feasible for (3).
b) Every feasible solution z† of (Safe-Approx) satisfies the
sub-optimality bound,

0 ≤ f0(z†)− f0(z∗) ≤ f0(z†)− κM , (12)

Algorithm 1: Sample quantile-based programming
Input: Problem (3) with δi ∈ [0.5, 1), ν ≥ 1, probability

of unreliability β ∈ (0, 1), sample generator for w
Output: z†, a suboptimal solution of (3)

1: Compute Mmin using (11) based on β, δi, N
2: Obtain M = bνMminc samples of w
3: for i ∈ N[1,N ]

4: Compute ∆inner
i using (10a)

5: Compute Q̂Mgi
(∆inner

i ) using (2b)
6: Solve (Safe-Approx) to local/global optimality for z†

7: Optional: Return suboptimality bound f0(z†)− κM ,
κM is the global opt. value of (Unsafe-Approx)

where z∗ is the unknown global optimum of (3), and κM is
the finite global optimal value of (Unsafe-Approx) .

We summarize the proposed approach in Algorithm 1, that
computes a suboptimal solution of (3) using Theorem 1.
The sample scaling ν in Step 2 helps the user trade-off
the availability of samples of w with the desire to reduce
∆inner
i −δi that indirectly reduces the conservativeness of z†.

Note that Q̂Mgi
in Step 5 can be evaluated efficiently using

a max-heap data structure [18, Sec. 6.1]. By design, the
computation of z† in Step 6 is unaffected by the size of M .

D. Discussion

1) What happens if (Unsafe-Approx) does not produce
a finite global optimum?: Theorem 1 excludes two cases
when solving (Unsafe-Approx) — infeasiblity (κM = ∞)
and unboundedness (κM = −∞).

When (Unsafe-Approx) is infeasible, (3) is infeasible
with a probability of 1−β. On the other hand, (12) yields a
trivial suboptimality bound of ∞ when (Unsafe-Approx)
is unbounded. (Unsafe-Approx) is guaranteed to have a
bounded (global) optimal value when (3) satisfies additional
requirements (e.g., Z is compact and f0 is continuous).

2) Comparison with moment-based constraint tightening:
A popular approach to enforce chance constraints is via
moments. For example, the Chebyshev-Cantelli bound pre-
scribes a constraint tightening for the chance constraint
relying only on the first and second moments of the random
variable g(w).

Lemma 3 (CHEBYSHEV-CANTELLI BOUND [5]). Let the
random variable g(w) have a finite mean µg and standard
deviation σg . Then, for any z ∈ Rnz and threshold δ ∈ (0, 1),

f(z) + µg + σg

√
δ/(1− δ) ≤ 0 ⇒ Pw{f(z) + g(w) ≤ 0} ≥ δ.

Consider (3c) in the form of (8) with N = 1, w ∼ N (0, 1)
where nw = 1, an arbitrary f , g as an identity map, and
varying threshold δ. By (1b), (3c) is equivalent to {z : f(z)+
Qw(δ) ≤ 0} for each δ.

Figure 1 compares the exact constraint tightening Qw(δ)
with the alternatives discussed in this paper — the proposed
constraint tightening approach (Q̂Mg (∆inner) in Proposition 2)
and the moment-based constraint tightening (Lemma 3). We



Fig. 1. Proposed constraint tightening Q̂M
g (∆inner) for M ∈ {2000, 105}

is less conservative than the moment-based tightening (Lemma 3).

TABLE I
PROPOSED SOLUTION (Safe-Approx) COMPUTES A SAFE,

NEAR-OPTIMAL MOTION PLAN USING JUST THE SAMPLES OF r` .

Proposed solution Optimal solution Moments-based
Formulation Safe-Approx Unsafe-Approx (13) with (15b) (13) with (15a)

Min. over all (t, `)

0.977 0.923 0.950 0.987
collision-avoidance
probability (13d)

Cost 122 115 117 129
Suboptimality 5 – – 12

performed the comparison over varying δ for two different
values of M ∈ {2000, 10000}, and β set to 10−8. We used
the true mean and the standard deviation of w in the moment-
based tightening.

Figure 1 shows that the proposed tightening Q̂Mg (∆inner)
provides a more precise approximation (smaller upper bound
of the true quantile-based tightening Qg) for all δ ∈ (0, δmax],
when compared to the moment-based tightening. Addition-
ally, as M increases, the proposed safe-approximation yields
a smaller constraint tightening and has a higher δmax.

We emphasize that the proposed tightening only needs
samples of w to compute Q̂Mg (∆inner), unlike the moment-
based tightening and the exact constraint tightening. The
latter approaches require prior knowledge of the first two
moments of w and the (true) quantile function of w re-
spectively, which if estimated from samples can invalidate
the approximation guarantees. Additionally, the dependence
on the finite (and fixed in Figure 1) number of samples
also explains the (relatively) faster increase of the proposed
tightening Q̂Mg (∆inner) for δ closer to one, compared to the
latter approaches.

IV. APPLICATION: MOTION PLANNING WITH
STOCHASTIC OBSTACLES

We consider the problem of a robot navigating in a
constrained environment with L ∈ N obstacles that have non-
deterministic geometries. Such problems arise when accurate
descriptions of the geometry are unavailable, possibly due to
sensing limitations.

The robot has double-integrator dynamics in x and y
coordinates, xt+1 = Axt + But, for each t ∈ N[0,T−1],
with state xt ∈ R4 denoting its position and velocity in each
dimension, input ut ∈ U where the convex and compact set
U ⊂ R2 encodes the actuation constraints, and T ∈ N is the
planning horizon.

Fig. 2. (Safe-Approx) (our proposed approach) computes a safe near-
optimal motion plan, while the moment-based approach produces a con-
servative motion plan. (Left) The computed motion plans are safe. (Right)
Zoomed-in view between the obstacles illustrate the clearances.

We denote the desired target state as xtarget ∈ R4. We also
require that the robot stays within a convex and compact
keep-in set K ⊂ R4. We assume that each of the L obstacles
are balls with known centers c` ∈ R2 but a stochastic radius
r` for all ` ∈ N[1,L]. We do not assume the knowledge of the
probability measure or the distribution function associated
with r`. Instead, we assume the ability to generate samples
of r` for any M ∈ N (e.g., noisy readings of the obstacle
geometry from sensors).

Given the initial state of the robot x0 ∈ K, we wish to
solve the following (non-convex) motion planning problem,

minimize
∑T

t=1
bt (13a)

subject to xt+1 = Axt +But, ∀t ∈ N[0,T−1], (13b)
∀t ∈ N[1,T ] ut−1 ∈ U , bt ∈ {0, 1}, xt ∈ K, (13c)
∀t∈N[1,T ],
`∈N[1,L]

, P{‖Cxt − c`‖ ≥ r`} ≥ δ, (13d)

∀t ∈ N[1,T ], ‖xt − xtarget‖ ≤ btDK. (13e)

with C = [I2 02×2] ∈ R2×4 and DK = supx,y∈K ‖x −
y‖ as the diameter of the set K. Problem (13) is a mixed-
integer nonlinear program with continuous decision variables
xt ∈ R4 for t ∈ N[1,T ] and ut ∈ R2 for t ∈ N[0,T−1],
and binary decision variables bt ∈ {0, 1} for t ∈ N[1,T ].
The constraints in (13c) ensure that the motion plan satisfies
actuation constraints and stays within the keep-in set. The
constraint (13d) requires that the risk of collision at each
time step t ∈ N[1,T ] and for each obstacle j ∈ N[1,L] is
below 1− δ, for a user-specified δ ∈ (0, 1). Using the “big-
M” formulation [11], (13a) and (13e) enforce that the optimal
solution of (13) has the robot taking the least number of steps
to reach the target with bt = 1 whenever ‖xt−xtarget‖ > DK.

We now discuss various reformulations of (13d) that
is non-convex in the decision variables. First, we obtain
(Safe-Approx) and (Unsafe-Approx) used in Theorem 1
by replacing (13d) in (13) with the following constraints,

‖Cxt − c`‖ ≥ Q̂Mr`
(∆inner), (14a)

‖Cxt − c`‖ ≥ Q̂Mr`
(∆outer), (14b)

for every t ∈ N[1,T ] and ` ∈ N[1,L] respectively. Here, the
sample risk thresholds ∆inner,∆outer in (14) are computed via
(10) using M samples of r`, and a user-specified probability
of unreliability β ∈ (0, 1). We also compare the proposed
sample-based approximations with existing moment-based



approach (Lemma 3) and exact quantile-based approach (8),

‖Cxt − c`‖ ≥ µr`
+ σr`

√
δ/(1− δ), (15a)

‖Cxt − c`‖ ≥ Qr`
(δ). (15b)

Unlike the proposed approach, the constraint reformulations
in (15) require prior knowledge of the distribution or the mo-
ments of r`. The traditional scenario-based approaches [8]
cannot be used to solve (13) due to the non-convexity (con-
straints (13d) and (13e) and the binary decision variables).

The reformulations of (13) using either (14a), (14b), (15a),
or (15b) result in a mixed-integer program with non-convex
quadratic constraints. We use GUROBI [19] to solve the re-
sulting optimization problems to global optimality. However,
we emphasize that the results in Theorem 1 hold even if a
locally optimal motion plan was obtained for (Safe-Approx).
For example, under some feasible assignment of binary vari-
ables, (13) simplifies to a non-convex optimization problem
with only continuous variables, which can be solved to a
local optimum via a local nonlinear optimization solver.

Figure 2 shows the various motion plans for δ = 0.95,
β = 10−8, T = 150, L = 4 (thus, N = 600 and
Mmin = 4043), M = 104 with ν ≈ 2.5, x0 = [0, 0, 0, 0]>,
xtarget = [1, 1, 0, 0]>, and K = [−0.1, 1.1]2 × [−5, 5]2.
We considered four obstacles with their radii given by an
exponential of mean 0.025. The motion plan of the proposed
sample quantile-based safe-approximation ((13) with (14a))
is similar to the optimal motion plan ((13) with (15b)). How-
ever, due to the inherent conservativeness of the moments-
based bound, the computed motion plan (using (13) with
(15a)) is unnecessarily conservative, resulting in longer path.

Table I summarizes the results along with a Monte-Carlo
simulation-based validation as well as the (sub)optimality of
each approach. We used 107 samples in the Monte-Carlo
simulations to compute the satisfaction of the constraint
‖Cxt − c`‖ ≥ r` for every t ∈ N[1,T ] and ` ∈ N[1,L],
and reported the lowest collision-avoidance probability (13d)
over all obstacles and time steps. As expected, the collision-
avoidance probability of (Safe-Approx), optimal solution,
and the moment-based solution are above the specified
threshold of δ = 0.95, while the collision-avoidance prob-
ability of (Unsafe-Approx) is below δ = 0.95. More-
over, the collision-avoidance probability of (Safe-Approx)
is closer to δ than the collision-avoidance probability of
the moment-based method highlighting again the conserva-
tiveness of the moment-based approach. Using the solution
from (Unsafe-Approx), we have a suboptimality bound
f0(z†)− κM = 7 on the solution of (Safe-Approx).

V. CONCLUSION AND FUTURE WORK

This paper proposes a sample quantile-based approach
to solve non-convex separable chance constrained programs
without any prior knowledge of the distribution or the mo-
ments of the uncertainty. We characterize tractable approxi-
mations of the chance constrained programs using the sample
quantile function. We also determine the minimum number of
samples and the appropriate sample risk thresholds needed
to compute a feasible solution with suboptimality bounds.

Unlike existing scenario-based approaches, we impose no
requirements on the convexity of the constraint functions.
However, a limitation of our current approach is the separa-
bility requirement on the chance constraints. Our future work
will investigate more general classes of chance constraints
that can be reformulated using the sample quantile function.
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APPENDIX

1) Proof sketch of Proposition 1: In (5) and (7), the
objective f0 and the constraint z ∈ Z are identical. To prove
that the constraint (7c) is an exact reformulation of (5c), we
use (2b) to show that Φ̂Mfi(z)+gi(w)(0) = Φ̂Mgi

(−fi(z)) for all
i ∈ N[1,N ]. Then, we complete the proof with Lemma 1.

2) Proof sketch of Proposition 2: Define ε =√
ln(N)+ln(1/β)

2M , then, 2 exp(−2Mε2) = β
N . The proof for

(9) follows from Boole’s inequality, Proposition 1, Lemma 2,
and the sample risk thresholds ∆inner

i and ∆outer
i defined in

(10) for all δi ∈ (0, 1).
The lower bound on M follows from the restrictions on M

to ensure that ∆inner
i ≤ 1 and ∆outer

i ≥ 0 for every i ∈ N[1,N ],
given δi, β, and N .
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