
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Transfer Learning for Bayesian Optimization with Principal
Component Analysis

Masui, Hideyuki; Romeres, Diego; Nikovski, Daniel N.

TR2022-169 December 20, 2022

Abstract
Bayesian Optimization has been widely used for black-box optimization. Especially in the
field of machine learning, BO has obtained remarkable results in hyperparameters optimiza-
tion. However, the best hyperparameters depend on the specific task and traditionally the BO
algorithm needs to be repeated for each task. On the other hand, the relationship between
hyperparameters and objectives has similar tendency among tasks. Therefore, transfer learn-
ing is an important technology to accelerate the optimization of novel task by leveraging the
knowledge acquired in prior tasks. In this work, we propose a new transfer learning strategy
for BO. We use information geometry based principal component analysis (PCA) to extract
a low-dimension manifold from a set of Gaussian process (GP) posteriors that models the
objective functions of the prior tasks. Then, the low dimensional parameters of this manifold
can be optimized to adapt to a new task and set a prior distribution for the objective function
of the novel task. Experiments on hyperparameters optimization benchmarks show that our
proposed algorithm, called BO-PCA, accelerates the learning of an unseen task (less data are
required) while having low computational cost.

International Conference on Machine Learning and Applications (ICMLA) 2022

c© 2022 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Transfer Learning for Bayesian Optimization with
Principal Component Analysis

1st Hideyuki Masui
Mitsubishi Electric Corporation

Kamakura, Kanagawa, Japan
Masui.Hideyuki@bc.MitsubishiElectric.co.jp

2nd Diego Romeres
Mitsubishi Electric Research Labs

Cambridge, MA, USA
romeres@merl.com

3rd Daniel Nikovski
Mitsubishi Electric Research Labs

Cambridge, MA, USA
nikovski@merl.com

Abstract—Bayesian Optimization has been widely used for
black-box optimization. Especially in the field of machine learn-
ing, BO has obtained remarkable results in hyperparameters
optimization. However, the best hyperparameters depend on the
specific task and traditionally the BO algorithm needs to be
repeated for each task. On the other hand, the relationship
between hyperparameters and objectives has similar tendency
among tasks. Therefore, transfer learning is an important tech-
nology to accelerate the optimization of novel task by leveraging
the knowledge acquired in prior tasks. In this work, we propose
a new transfer learning strategy for BO. We use information
geometry based principal component analysis (PCA) to extract
a low-dimension manifold from a set of Gaussian process (GP)
posteriors that models the objective functions of the prior tasks.
Then, the low dimensional parameters of this manifold can be
optimized to adapt to a new task and set a prior distribution
for the objective function of the novel task. Experiments on hy-
perparameters optimization benchmarks show that our proposed
algorithm, called BO-PCA, accelerates the learning of an unseen
task (less data are required) while having low computational cost.

Index Terms—Bayesian optimization, Gaussian process, trans-
fer learning, principal component analysis

I. INTRODUCTION

Bayesian Optimization (BO) is a well-established frame-
work for solving black-box optimization problems of the form:

x∗ = arg min
x∈X

f(x), (1)

where f(·) is an expensive-to-evaluate objective function f :
X → R and X ⊂ RD denotes the configuration space. BO has
been applied with remarkable results in a wide range of areas,
such as hyperparameter optimization [4], [20], robotics [11],
[16], materials design [29], medical science [22] and many
others. BO searches for the global optimum x∗ by iteratively
selecting input configurations and updating a surrogate model
of the objective function f . In the case of hyperparameter
optimization (HPO) task, x is a vector of hyperparameters
and f represents a validation error.

In this work, we focus on transfer learning for black-box
optimization [2]. We assume that we have already completed
T somewhat similar black-box optimization tasks {ft}Tt=1

defined over the same configuration space X . If a new similar
black-box optimization task is given, it could be beneficial to
leverage the prior tasks as ancillary information when solving

the new one. Hence, our goal is to leverage prior source tasks’
data sets to accelerate the optimization of the test task fT+1.

Our algorithm accomplishes the knowledge transfer by
extracting a low-dimensional manifold and parameter vector
from the prior tasks’ data, based on information geometry,
and updating the parmater vector to solve the new task. This
approach has several advantages. First, by using information
geometry, a low-dimensional parameter vector is learned for
improved stability even though a limited number of source
tasks and observations. Second, the optimization problem of
these few parameters in each iteration of BO can be converted
to one of linear least squares. These advantages are important,
because in real situations, it is commonly difficult to collect
a lot of data from source tasks to train complex models.
Furthermore, we often have to use limited computer resources.

Contributions. Our main contributions are as follow:
1) We introduce a new transfer learning method for BO,

called BO-PCA, that uses information geometry-based
feature extraction for Gaussian process learning of the
objective functions.

2) The proposed algorithm is able to update online the
transfer learning model in each iteration of the BO
algorithm.

3) We show the effectiveness of our algorithm over s.o.t.a.
approaches, using standard HPO benchmark tasks and
data sets.

II. BACKGROUND

A. Bayesian Optimization

BO is a class of machine learning-based algorithms that
aim to solve the problem defined in (1), when standard
optimization algorithms typically fail due to the complexity
of the objective function f(x). This class of algorithms is
typically composed of iterative procedures that consist of two
main computational steps with the objective of exploring the
configuration space X and finding an optimal configuration
x∗.

The first step consists of constructing a surrogate function of
the objective function f(·) using a set of collected observations
D = (X,y) = {(xi, yi)}Ni=1. We assume that the vector y
consists of noisy observations of f(·), i.e.,

yi = f(xi) + ϵ, (2)

where ϵ is an independent zero-mean Gaussian noise with
variance β−1. Typically, the surrogate function is estimated
using Gaussian process regression (GPR) [25]. In this case, the
objective function is modeled a priori as a Gaussian Process
(GP), f(·) ∼ N (m0(·), k(·,x′)), where m0(·) is an arbitrary
mean function and and k(·,x′) is the a priori covariance
matrix, defined by means of a kernel. Typical choices of the
kernel function are the RBF and the Matérn 5/2 kernel function
[25]:

k5/2(x,x
′) =

(
1 +

√
5r

λ
+

5r2

3λ2

)
exp

(
−
√
5r

λ

)
, (3)

where r = |x − x′| and λ is a length scale parameter called
a hyperparameter. Every kernel function is parameterized by
some hyperparameters and is usually optimized by maximiza-
tion of the marginal log-likelihood:

log p(y|X,λ) ∝ − log |Kλ| − yT K−1
λ y. (4)

Remarkably, the posterior distribution of f for an unseen
point x, namely f̂(x|D), can be computed analytically, and
is normally distributed with mean µ(x) and variance σ2(x)
which are defined below:

µ(x) = m0(x) + k(x)T (K + β−1I)−1
(y −m0), (5)

σ2(x) = k(x,x)− k(x)T (K + β−1I)−1
k(x), (6)

where K = k(X,X) ∈ RN×N is defined element-wise through
the kernel function Ki,j = k(xi,xj), the a priori covariance
matrix, and k(x) = k(x,X) ∈ RN×1 is a vector with entries
ki = k(x,xi) and m0 := m0(X) ∈ RN×1 is the mean vector,
where each entry is defined as m0,i = m0(xi) (typically
m0(x) ≡ 0). For later convenience, the posterior distribution
f̂(x|D) can also be defined based on the GP posterior of the
collected observations, f(X), which is a multivariate normal
distribution N (µ,Σ), with

µ = m0 + K
(
K + β−1I

)−1
(y −m0), (7)

Σ = K − K
(
K + β−1I

)−1 K, (8)

After standard computation, an equivalent definition of (5)
and (6) based on µ and Σ is:

µ(x) = m0(x) + k(x)T K−1(µ−m0), (9)

σ2(x) = k(x,x) + k(x)T K−1 (Σ− K)K−1k(x). (10)

The second step consists in maximizing an acquisition func-
tion, which is defined according to an exploration-exploitation
criterion. One of the most commonly used function is the
expected improvement (EI) [14]:

α(x|D) = Ef̂(x|D)

[
max(0, f̂(x+)− f̂(x))

]
(11)

= σ(x)zΦ(z) + σ(x)ϕ(z), (12)

where x+ = arg min[f̂(x1), f̂(x2), . . . , f̂(xN]) is the current
best configuration, z = f̂(x+)−µ(x)

σ(x) is a standard normal
distribution, and Φ(·) and ϕ(·) denote the CDF and PDF of
f̂(·), respectively. W.l.o.g. in this paper, we use the EI function

as the acquisition function, but others could be used, e.g. the
probability of improvement, the knowledge gradient, etc. The
interested reader can refer for example to [6], [19], [21] for a
more in depth description of BO.

B. GP-ePCA and GP-mPCA

Principal component analysis (PCA) is a widely used al-
gorithm to extract a low-dimensional linear subspace from
high dimensional data that explains that data well. The case in
which each of these data points represents a GP distribution
was studied in [1], and used in [10] to propose a meta-learning
algorithm for GP based on PCA.

Let us assume that there are T data sets {Dt}Tt=1 =
{(Xt,yt)}Tt=1 with Xt ∈ RNt×D and yt ∈ RNt×1, where Nt

is the number of data points in data set t. With a slight abuse
of notation, some of the quantities defined in the previous
section for one data set will be redefined for multiple data
sets. Let now X =

⋃T
t=1 Xt be a union set of the input

sets. Following Section II-A, the estimated GP posterior of
X given the t-th data set is a multivariate normal distribution
f̂t(X|Dt) ∼ (µt,Σt), with

µt = m0(X) + Kt(Ktt + β−1I)−1(yt −m0(Xt)), (13)

Σt = K − Kt(Ktt + β−1I)−1KT
t , (14)

where K = k(X,X), Kt = k(X,Xt), Ktt = k(Xt,Xt).
Since the multivariate normal distribution belongs to the

exponential family, each GP posterior f̂t(X|Dt) is a point on
a Riemannian flat manifold, here denoted by S. A flat manifold
is spanned by a coordinate system. In particular, there are two
coordinate systems, the e-coordinates and m-coordinates, that
define two subspaces linear w.r.t. ξt = (θT

t , vec(Θt)
T)T and

ζt = (ηT
t , vec(Ht)

T)T , respectively, where:

θt = Σ−1
t µt, Θt = −1

2
Σ−1

t , (15)

ηt = µt, Ht = µtµ
T
t +ΣT

t . (16)

The goal of the GP-ePCA and GP-mPCA methods is to
project {ξt}Tt=1 and {ζt}Tt=1, respectively, into a low dimen-
sion linear submanifold M ⊂ S which is expressed by the set
of points:

ξ̃t = (θ̃t
T
, vec(Θ̃t)

T)T = Uξwt + uξ,0, (17)

ζ̃t = (η̃T
t , vec(H̃t)

T)T = Uζwt + uζ,0. (18)

where Uξ,Uζ ∈ R(N+N2)×L with L < T and wt ∈ RL×1.
When {ξt}Tt=1 or {ζt}Tt=1 are observed, which is at training
time, the task of GP-ePCA and GP-mPCA is to optimize
the weights W = (w1,w2, . . . ,wT)

T , the basis vectors
U = (u1, . . . ,uL), and the offset u0 by minimizing the sum
of the KL divergence:

Ŵ, Û, û0 = arg min
W,U,u0

E(W,U,u0), (19)

E(W,U,u0) =


∑T

t=1 DKL

(
ξt∥ξ̃t

)
(GP-ePCA)∑T

t=1 DKL

(
ζ̃t∥ζt

)
(GP-mPCA)

.

As a result, GP-ePCA, respectively GP-mPCA, obtain a
low-dimensional parameter vector wt which characterizes
each training data set. Therefore, at prediction time, given the
weights w, the posterior distribution N (µ̃(w), Σ̃(w)) can be
restored by inverting (15) (and (16)). The posterior estimator
of a test point x can be computed with mean and variance:

m̃(x,w) = m0(x) + k(x)T K−1(µ̃(w)−m0), (20)

σ̃2(x,w) = k(x,x) + k(x)T K−1(Σ̃(w)− K)K−1k(x).
(21)

where µ̃(w) and Σ̃(w) are computed as bellow:

µ̃(w) =

{
−0.5Θ̃−1θ̃ (GP-ePCA)
η̃ (GP-mPCA)

, (22)

Σ̃(w) =

{
−0.5Θ̃−1 (GP-ePCA)

H̃ − η̃η̃T (GP-mPCA)
. (23)

C. Sparse GP-ePCA and GP-mPCA

The major problem of GP-PCA is the calculation cost. If
the size of X =

⋃T
t=1 Xt is |X| = N , the computation

cost of GP-PCA becomes O(N3). The authors of GP-PCA
[10] also proposed sparse GP-PCA to reduce calculation cost
which is based on sparse Gaussian process [12]. Let Z be
a set of inducing points Z =

⋃T
t=1 Zt, Kz = k(X,Xz) and

Kzz = k(Z,Z). The covariance matrix can be approximated
as bellow:

K ≈ KzK−1
zz KT

z . (24)

In the case of sparse GP-PCA, the posterior distribution of
each task corresponds to (13) and (14) is defined as below:

µt = m0(Xz) + KzzA−1
zz Kzt(yt −m0(Xt)), (25)

Σt = β−1KzzA−1
zz Kzz, (26)

where Azz = β−1Kzz +KT
z Kz and Kzt = k(Xz,Xt). Let the

number of inducing points as |Zt| = M and share this for all
tasks, Z1 = Z2 = · · · = ZT . In this case, the calculation cost
of GP-PCA is reduced from O(N3) to O(M3).

III. PROBLEM FORMULATION

Consider T source tasks available at training time, each
of this task is defined by an objective function {ft}Tt=1

and for each task Nt labeled data are collected {Dt}Tt=1 =
{{(xt,n, yt,n)}Nt

n=1}Tt=1. Given the data sets {Dt}Tt=1, it is
possible to estimate T surrogate functions, using GPR or
any othe machine learning function approximator. We are
interested in a data-efficient transfer learning BO algorithm
capable of transferring the knowledge acquired in the T source
tasks to solve a novel test task (t = T + 1), i.e.,

x∗
T+1 = arg min

x∈X
fT+1(x|{Dt}Tt=1). (27)

The question we want to answer is: “How can we learn
efficiently, in terms of data complexity, a new task, having
previously learned T similar source tasks?”

A. Related Work

Standard BO without transfer learning has been already dis-
cussed in the previous sections, see [19] for a survey. The use
of PCA in BO was proposed in [17] to find a low dimensional
space for high dimensional data point where the surrogate of
the objective function is learned. This is very different from
our approach since PCA was used in the observations and not
in the GP posteriors like in GP-PCA. Moreover, in this work
we focus on transfer learning of BO from source tasks to a
novel unseen task. This problem attracted a lot of research
and is strongly connected to the concept of meta-learning
[9], [24]. In [2], the authors propose a series of benchmark
tasks, data sets as well as metrics to facilitate the comparison
among different methods. Moreover, the authors of [5] not only
propose a method for transfer learning BO called RGPE, but
they also make available the data sets and the implementation
of s.o.t.a. methods. We will refer to this implementation and
benchmarks to compare our algorithm. The main algorithms
for BO transfer learning are summarized in the following.
ABLR (adaptive Bayesian linear regression) [15], is a multi-
task Bayesian linear regression approach. Transfer learning
is achieved by sharing the deep neural network which is
trained with source tasks data. Then, separate Bayesian linear
regressors are embedded for each task. TST-R [27] (two-stage
transfer surrogate using pairwise hyperparameter performance
rankings) is an ensemble approach. At the first stage, a
surrogate model is trained for each source and test task.
Then, at the second stage, the weights are calculated for
each model using similarity between the test task and each
source task. TAF-R (transfer acquisition function framework
using pairwise hyperparameter performance rankings) [28], is
a similar ensemble approach to TST-R. The deference between
TST-R is that TAF-R forms ensembles of acquisition functions
in order to overcome different scales of evaluation scores.
Finally, RGPE (ranking-weighted Gaussian process ensemble)
[5], is another ensemble surrogate models approach similar to
TST-R. The weights are calculated by optimizing a ranking
loss using surrogate models and test task data.

IV. BO-PCA
We propose to solve the transfer learning BO problem (27)

by learning the surrogate function with a GP-PCA method
(both GP-ePCA and GP-mPCA are possible). We call this
approach BO-PCA. GP-PCA is a principled way of encoding
the GP posteriors in a low-dimensional manifold, and at
training time it defines the space where the posterior of the
novel T + 1 task can be (data) efficiently learned by creating
transfer learning model that depends on a low dimensional set
of parameters easier to update online. The proposed method
is described in Algorithm 1.

During training time, we learn the {f̂t(X|Dt)}Tt=1 surrogate
functions of the source tasks using GP-ePCA (or GP-mPCA),
to obtain L basis Û and the offset û0, as described in
Section II-B. Then, in order to optimize an unseen test task,
fT+1, we fix the basis functions {Û, û0}, collect a small
number of data n0 from fT+1, and each time a new n-th

Algorithm 1 BO with GP-PCA Prior
Input: source tasks data {Dt}Tt=1, number of initial points
n0, budget Nt+1, GP-PCA manifold dimension L.
Execute GP-ePCA to obtain Ŵξ, Ûξ, ûξ,0 (19)
(Execute GP-mPCA to obtain Ŵζ , Ûζ , ûζ,0 (19))
Observe fT+1 at n0 points DT+1 = {xT+1,n, yT+1,n}n0

n=1

Set n = n0

while n < NT+1 do
Fit weights ŵ of GP-ePCA (GP-mPCA) (28)
Update weight wT+1 = ŵ
Set prior mean m0(x) = m̃(x,wT+1) for fT+1

Learn f̂t(X|DT+1) using GPR
Optimize xT+1,n = arg max

x∈X
α(x|DT+1)

Observe yT+1,n = fT+1(xT+1,n)
Update DT+1 = DT+1 ∪ {(xT+1,n, yT+1,n)}
n = n+ 1

end while
Output: x̂T+1 = arg min

n=1,2,...,NT+1

fT+1(xT+1,n)

data point (xT+1,n, yT+1,n) arrives, the weight vector, wT+1

is updated by minimizing the least-squares problem:

ŵ = arg min
w∈RL

∥yT+1 − m̃(Xt+1,w)∥22 , (28)

where m̃(Xt+1,w) is a nT+1 × 1 vector where each entry
m̃i(Xt+1,w) = m̃(xT+1,i,w). We use this GP-PCA esti-
mated function m̃(x, ŵ) as a prior mean function of fT+1,
that is m0(x) = m̃(x,wT+1). We can therefore use GPR
to learn the surrogate objective function of f̂t(X|DT+1).The
subsequent steps of each iteration follow in accordance with
standard BO algorithms.

Remark 1: Note that after computing the optimal vector of
weights ŵ, we could compute both the mean and covariance
GP-PCA functions, see equations (22) and (23), respectively.
However, the source tasks commonly have many more data
points than the test task, and for this reason, the GP-PCA co-
variance function tends to significantly affect the GP posterior
variance (10), which leads to two practical limitations if used
in Algorithm 1. First, given the many data points in the source
tasks, the estimated variance tends to be narrow, preventing the
BO algorithm to explore sufficiently. Second, if some test task
configurations are far away from all source task configurations,
the posterior variance tends to be erroneously very large, only
because that point was not seen during training. For these
reasons, only the GP-PCA mean function is used to transfer
the knowledge of the source tasks to the novel task.

A. GP-ePCA vs GP-mPCA

Next, we discuss the main differences between GP-ePCA
and GP-mPCA that are relevant to implementing our transfer
learning BO optimization algorithm. In Algorithm 1, the
weights are optimized by solving problem (28) at each itera-
tion (i.e., every time a new data pair becomes available). In the

case of GP-ePCA, the estimation vector µ̃(w) is calculated as
shown below, following (22),

µ̃ePCA(w) = −0.5
(

ÛΘw + û0,Θ

)−1 (
Ûθw + û0,θ

)
, (29)

where,[
θ̃(w)

vec
(
Θ̃(w)

)] = Ûξw + ûξ,0 =

[
Ûθw + û0,θ

ÛΘw + û0,Θ

]
. (30)

Analogously, in the case of GP-mPCA:

µ̃mPCA(w) = Ûηw + û0,η, (31)

where[
η̃(w)

vec
(
H̃(w)

)] = Ûζw + û0 =

[
Ûηw + û0,η

ÛHw + û0,H

]
. (32)

It follows that µ̃mPCA(w) is a linear function of the weights w,
while µ̃ePCA(w) is a non-linear function of the same weights.
For this reason, the optimization problem (28) for GP-ePCA
is much harder to solve and in practice standard gradient-
based methods were failing to obtain optimal weights in many
experiments. To make GP-ePCA working we had to apply
derivative-free optimization algorithms such as CMA-ES [8],
which are in general slower to compute. Therefore, GP-mPCA
is superior to GP-ePCA from the point of view of calculation
cost.

B. Online GP-mPCA

Following the discussion in the previous section the weight
optimization problem (28) for GP-mPCA is linear and is
obtained as below by substituting (31) into (20):

ŵ = arg min
w∈RL

∥∥yT+1 − k(Xt+1,X)K−1µ̃(w)
∥∥2
2
, (33)

= arg min
w∈RL

∥∥y′
T+1 − ϕ(Xt+1)w

∥∥2
2
, (34)

where

y′
T+1 = yT+1 − k(Xt+1,X)K−1û0,η, (35)

ϕ(XT+1) = k(Xt+1,X)K−1Ûη. (36)

Hence, (34) is a least squares problem and can be solved
recursively by means of the recursive least squares algorithm
[13, Chp. 11]. Therefore, the weights at the n-th iteration
can be updated exactly based on the weights at the n − 1-
th iteration, without having to solve the whole optimization
problem again, and the update does not depend on the number
of data, leading to a fast weight update step.

C. Initialization of GP-mPCA

The GP-PCA algorithm uses gradient descent in (19) to
optimize U, u0 and W. That is, it is not guaranteed to converge
to the global optimum. Therefore, initialization of U, u0 and
W is very important. The authors of m-PCA (e-PCA) [1]
suggest to use m-center (e-center) for u0 and to compute

TABLE I
SEARCH SPACE AND HYPERPARAMETERS DEFINITION FOR EACH BENCHMARK.

Quadratic AdaBoost SVM NN
Name Range Log Name Range Log Name Range Log Name Range Log

x0 [−5, 5] No # Iterations [2, 104] Yes Use linear kernel {No,Yes} No Batch size [16, 512] Yes
x1 [−5, 5] No # Terms [2, 30] Yes Use polynomial kernel {No,Yes} No Learning rate [10−4, 10−1] Yes
x2 [−5, 5] No Use RBF kernel {No,Yes} No Momentum [0.1, 0.99] No

Trade-off parameter [2−5, 26] No Weight decay [10−5, 10−1] Yes
Degree of the kernel [2, 10] No # Layers [1, 5] No
Width of the kernel [10−4, 103] Yes # Units per layer [64, 1024] Yes

Dropout [0.0, 1.0] No

standard PCA to initialize U and W. The definition of m-
center (e-center) is given by the arithmetic mean of samples
in m-coordinate (e-coordinate),

û0 =
1

T

T∑
t=1

ηt,

(
û0 =

1

T

T∑
t=1

θt

)
. (37)

In order to leverage the linearity of GP-mPCA, we modify
its initialization. In light of the fact that our algorithm only
requires the mean µ̃(w) of the restored GP distribution and
µ̃(w) is obtained only with Ûη and û0,η (and not also ÛH
and û0,H) in (31), it is not necessary to extract low-dimension
features from {Ht}Tt=1, defined in (16).

We propose to expand the basis functions of U from L to
L+ T which corresponds to also increase the dimensionality
of the weights W to L+ T

UW + u0 =

[
Uη,η Uη,H
UH,η UH,H

] [
Wη

WH

]
+

[
u0,η

u0,H

]
, (38)

where each matrix and vector is initialized as below.
• u0,η: m-center
• Uη,η,Wη: PCA
• UH,H =

[
vec(Σ1 + η̃1η̃

T
1), . . . , vec(ΣT + η̃T η̃

T
T)
]

• Uη,H = O, UH,η = O, WH = I, u0,H = 0

This implies that the features Uη,η and the weights Wη are
extracted to characterize only the mean functions {µt}Tt=1 and
not the covariance functions. Moreover, this expansion theoret-
ically means that the covariance function can be reconstructed
exactly i.e., {Σt}Tt=1 = {Σ̃(wt)}Tt=1.

V. EXPERIMENTS

In this section, we aim to validate the proposed transfer
learning BO algorithm w.r.t. state-of-the-art algorithms in
terms of data efficiency, accuracy and computational time. BO-
PCA is compared against the transfer learning BO algorithms
described in Section III-A, namely ABLR [15], TST-R [27],
TAF-R [28], RGPE [5] and Vanilla BO. The implementation
of these baselines, and of the benchmark datasets was made
available in the AutoML/transfer-hpo-framework repositories1

[5], and we rely on the same implementation for fairness of
comparison. The proposed algorithm is implemented in Python
and uses GPy2 for standard GPR. All computation-time based

1https://github.com/automl/transfer-hpo-framework
2https://sheffieldml.github.io/GPy/

experiments were performed with a 8-core i7-4790K CPU with
16 GB of memory on an Ubuntu machine.

A. HPO Benchmark Problems

We consider 4 well known benchmark functions to evaluate
the performance of the algorithms. Table II summarizes the
main properties of each benchmark, such as the dimension of
the hyperparameters to learn, the number of tasks, the number
of sampling data collected for each task, and their respective
references.

TABLE II
SUMMARY OF BENCHMARKS

Name # Dim Ntasks Nt Reference

Quadratic Function 3 30 50 [15]
AdaBoost Grid 2 50 50 [18]
SVM Grid 6 50 50 [18]
NN Grid 7 35 50 [30]

The first benchmark consists of parameterized quadratic
functions [15]:

ft(x|at, bt, ct) = at ∥x∥22 + bt1Tx+ ct, (39)

where the three coefficients are sampled uniformly from
a, b, c ∼ Uniform(0.1, 10). Then, we use two HPO bench-
marks called Adaboost and SVM defined in [18]. These bench-
marks were created using 50 classification datasets chosen ran-
domly from the UCI repository3. They are denominated grid
benchmarks, because their test accuracy was pre-computed on
a discretized grid of hyperparameters, 2 and 6, respectively.
Finally, the last HPO benchmark is composed of deep neural
networks defined in [30]. This benchmark was created using
training the networks in 35 different tasks in the OpenML
datasets [7] and accounting for hyperparameters of dimension
7. The test accuracy was pre-computed for 2,000 configura-
tions, which were sampled randomly. The hyperparameters
meaning and search space of each benchmark are shown in
Table I. The ‘log’ column shows whether the hyperparameters
are converted into the logarithmic scale for numerical stability
purposes.

3https://archive.ics.uci.edu/ml/index.php

TABLE III
NORMALIZED REGRET

Quadratic [×105] AdaBoost [×102]
10 20 30 40 50 10 20 30 40 50

Vanilla BO 519 10.7 0.82 0.69 0.59 4.07 2.27 1.40 0.74 0.57

ABLR 776 519 287 200 169 4.29 2.43 1.56 1.11 0.68
TST-R 734 704 677 598 536 4.46 2.76 1.76 1.16 0.71
TAF-R 78.8 8.33 1.01 0.84 0.72 3.91 2.36 1.53 0.89 0.59
RGPE 141 83.5 58.2 46.3 31.1 4.75 2.51 1.55 0.92 0.55

BO-ePCA 108 1.39 0.48 0.44 0.40 4.02 2.26 1.59 1.23 0.95
BO-mPCA 76.7 0.79 0.42 0.35 0.34 3.91 2.21 1.52 1.23 1.00

SVM [×102] NN [×102]
10 20 30 40 50 10 20 30 40 50

Vanilla BO 4.70 2.55 1.56 0.91 0.74 4.64 2.70 1.62 1.08 0.86

ABLR 4.29 2.43 1.56 1.11 0.68 5.12 3.64 3.30 2.73 2.43
TST-R 5.37 3.97 3.06 2.19 1.77 4.73 3.58 2.50 1.81 1.54
TAF-R 4.69 2.52 1.65 0.95 0.66 4.37 2.39 1.39 0.98 0.85
RGPE 5.72 3.94 2.91 1.96 1.43 3.23 1.91 1.50 1.21 1.03

BO-ePCA 3.97 1.77 0.85 0.54 0.33 3.30 1.72 1.21 0.99 0.90
BO-mPCA 3.97 1.54 0.80 0.40 0.27 3.25 1.67 1.23 1.02 0.88

B. Experimental Design

For each benchmark, we perform the experiments in a leave-
one-task-out style. That is, among all possible tasks, we pick
one as the test task, and all the others are considered source
tasks. This experiment is repeated in turn, so that each and
every task becomes a test task.

From each source task, Nt = 50 points were randomly
collected and the number of basis functions in BO-PCA was
set to L = 1. We used sparse GP-PCA for all experiments.
The number of inducing points selected was |Z| = 30 for
the Quadratic and AdaBoost benchmark, and |Z| = 50 for
the SVM and NN benchmark. All the inducing points were
collected by Latin hypercube sampling [23]. At test time,
all 5 methods started by collecting the same n0 = 5 initial
points, which were generated by a sequential model-free
hyperparameter optimization [26], from the test task function.
The number of total data collected for each test task was set to
NT+1 = 50, corresponding to 45 iterations of the BO transfer
learning algorithms.

After performing these experiments, so that each and every
task became a test task, we averaged the performance across
test tasks for each benchmark. Two evaluation metrics were
computed: the average normalized regret and the average rank,
that have been proposed as standard metrics for HPO problems
in [2]. First, the average normalized regret represents the
average of 0-1 range scaled regret on each task. The definition
of average normalized regret after N iterations is

rN =
1

Ntasks

Ntasks∑
t=1

min
n∈[1,...,N]

yt,n − fmin
t

fmax
t − fmin

t

, (40)

where Ntasks is a number of tasks of the benchmark, yt,n is
the observation of task t at the n−th iteration and fmin

t and

fmax
t are the best and worst global values of the function that

are available for evaluation purposes only:

fmin
t = min

x
ft(x), fmax

t = max
x

ft(x). (41)

Second, the competing methods are ranked at each iteration
accordingly to the normalized regret, going from the best
method with score equal 1 to the worst one with increasing
score. Every experiment is repeated 15 times and each time a
different set of Nt = 50 data point is randomly selected for
each source task.

TABLE IV
COMPUTATION TIME [MS]

Quadratic AdaBoost
Method 10 30 50 10 30 50

ABLR 33K 14K 35K 83K 31K 2.9K
TST-R 13.7 40.1 155 24.1 68.5 234
TAF-R 13.7 40.3 154 24.2 68.4 233
RGPE 63.5 234 762 86.4 334 1072

BO-ePCA 299 310 473 330 335 464
BO-mPCA 1.50 1.59 1.73 1.57 1.57 1.71

SVM NN
Method 10 30 50 10 30 50

ABLR 60K 82K 61K 32K 30K 9.6K
TST-R 29.4 78.3 259 16.9 50.4 188
TAF-R 27.0 76.6 244 16.5 50.0 192
RGPE 100 375 1764 69.9 261 847

BO-ePCA 367 374 616 322 333 471
BO-mPCA 2.68 3.26 2.71 2.28 2.25 2.35

C. Results

The results of the normalized regret are shown in Table
III. For each method, we compared the averaged normalized
regret after 10, 20, 30, 40 and 50 iterations of BO. We
underline the best value per benchmark at each number of

(a) Average rank on the quadratic function (b) Average rank on the AdaBoost grid benchmark

(c) Average rank on the SVM grid benchmark (d) Average rank on the NN grid benchmark

Fig. 1. Average rank

iterations and show in boldface the values which are not
significantly different from the best value accordingly to a
Wilcoxon signed-rank test [3] with significant level α = 0.05.
BO-PCA outperformed or performed as well as the best of the
other transfer learning algorithms in almost all the benchmarks
and all the number of iterations. Indeed, when the average
normalized regret of BO-PCA does not have the best value,
it is not statistically different from the best method. Only in
the AdaBoost benchmark at 40 and 50 iterations, the proposed
method was outperformed. This first metric tell us that BO-
PCA was empirically the most data-efficient algorithm and
the most accurate in most of the cases. These results are
confirmed also by the rank shown in Figure 1, where each of
the figures displays the average rank and its standard deviation
for one of the four benchmarks. Also, the rank shows that BO-
PCA is either the best or comparable to the best competitor,
which sometimes is RGPE and sometimes plain BO, for each
iteration of each task.

Finally, we also compare the computational time needed
to update the transfer learning models of the 6 methods.
This corresponds to the time to update the Bayesian linear
regression for ABLR, and to the time to update the weight
vector for the other transfer learning methods. Note that this
is the discriminatory step, as all the other steps in the BO
iteration are equivalent in all the algorithms (except for ABLR
that is anyway performing the worst). The results are shown
in Table IV.

The weights of GP-mPCA are updated much faster than
any other method. This is because it is the only algorithm
that can be updated recursively, as described in Section IV-B.

In addition, although the computational time of TST-R, TAF-
R and RGPE increases at each iteration, GP-mPCA remains
constant, as it does not depend on the number of data. Note
that the computational time for ABLR is much slower than the
others, because of numerical issues related to matrix inversion
that cause long computations for numerical adjustments.

We can conclude that BO-PCA outperforms the s.o.t.a.
algorithms in the analyzed benchmarks. Comparing the two
variants of this algorithm (using GP-ePCA and GP-mPCA),
we obtain similar results in terms of performance, but with GP-
mPCA always slightly outperforming GP-ePCA. This supports
the efficacy of the proposed initialization method designed
specifically for GP-mPCA and described in Section IV-C.
Given these results, and the fact that GP-mPCA is much faster
in terms of computational time, we can conclude that BO-PCA
equipped with GP-mPCA is the most promising algorithm for
transfer learning BO.

VI. DISCUSSION AND CONCLUSIONS

In this work, we proposed an efficient BO algorithm for
transfer learning based on GP-PCA, called BO-PCA. It first
learns low-dimensional features from a set of Gaussian pro-
cesses posteriors of the source tasks using GP-PCA. Then, it
updates the prior functions by optimizing the low dimensional
parameters of the extracted features to fit the target task. The
approach could be used with both GP-ePCA and GP-mPCA.
In the latter case, the transfer learning procedure becomes a
least squares problem which can be solved recursively and
independent of the number of data. Therefore, our algorithm
requires much lower computational cost compared to previous

methods. We show that our algorithm either works more
accurately and is more data efficient or works as well as the
previous methods for HPO tasks, even though it incurs a much
lower computational cost.

REFERENCES

[1] S. Akaho. e-pca and m-pca: Dimension reduction of parameters by
information geometry. In IEEE international Joint Conference on Neural
Networks, volume 1, pages 129–134, 2004.

[2] S. P. Arango, H. S. Jomaa, M. Wistuba, and J. Grabocka. Hpo-b: A
large-scale reproducible benchmark for black-box hpo based on openml.
arXiv preprint arXiv:2106.06257, 2021.

[3] J. Demšar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7(1):1–30, 2006.

[4] S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and efficient
hyperparameter optimization at scale. In Proceedings of the 35th
International Conference on Machine Learning, pages 1437–1446, 2018.

[5] M. Feurer, B. Letham, and E. Bakshy. Scalable meta-learning for
bayesian optimization using ranking-weighted gaussian process ensem-
bles. In AutoML Workshop at ICML, volume 7, 2018.

[6] P. I. Frazier. A tutorial on bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018.

[7] P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and J. Van-
schoren. An open source automl benchmark. arXiv preprint
arXiv:1907.00909, 2019.

[8] N. Hansen, D. V. Arnold, and A. Auger. Evolution Strategies, pages
871–898. Springer Berlin Heidelberg, 2015.

[9] F. Hutter, L. Kotthoff, and J. Vanschoren, editors. Automatic Machine
Learning: Methods, Systems, Challenges. Springer, 2019.

[10] H. Ishibashi and S. Akaho. Principal component analysis for gaussian
process posteriors. Neural Computation, 34:1189–1219, 2022.

[11] N. Jaquier, V. Borovitskiy, A. Smolensky, A. Terenin, T. Asfour, and
L. Rozo. Geometry-aware bayesian optimization in robotics using
riemannian matérn kernels. In Conference on Robot Learning (CoRL),
2021.

[12] H. Liu, Y.-S. Ong, X. Shen, and J. Cai. When gaussian process meets big
data: A review of scalable gps. IEEE transactions on neural networks
and learning systems, 31(11):4405–4423, 2020.

[13] L. Ljung. System identification. In Signal analysis and prediction, pages
163–173. Springer, 1998.

[14] J. Mockus, V. Tiesis, and A. Zilinskas. The application of bayesian
methods for seeking the extremum. Towards global optimization, 2(117-
129):2, 1978.

[15] V. Perrone, R. Jenatton, M. Seeger, and C. Archambeau. Scalable hy-
perparameter transfer learning. In Proceedings of the 31st International
Conference on Advances in Neural Information Processing Systems,
pages 12751–12761, 2018.

[16] A. Rai, R. Antonova, F. Meier, and C. Atkeson. Using simulation to
improve sample-efficiency of bayesian optimization for bipedal robots.
Journal of Machine Learning Research, 20:1–24, 2019.

[17] E. Raponi, H. Wang, M. Bujny, S. Boria, and C. Doerr. High dimensional
bayesian optimization assisted by principal component analysis. In
International Conference on Parallel Problem Solving from Nature,
pages 169–183. Springer, 2020.

[18] N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Scalable hyperpa-
rameter optimization with products of gaussian process experts. In Joint
European conference on machine learning and knowledge discovery in
databases, pages 33–48. Springer, 2016.

[19] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas.
Taking the human out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148–175, 2015.

[20] J. Snoek, H. Larochelle, and R. Adams. Practical bayesian optimization
of machine learning algorithms. In Proceedings of the 25th International
Conference on Advances in Neural Information Processing Systems,
pages 2960–2968, 2012.

[21] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimiza-
tion of machine learning algorithms. Advances in neural information
processing systems, 25, 2012.

[22] N. Sugihara, H. Sugihara, Y. Otake, R. Krems, H. Nakamura, and
S. Fuse. Rapid and mild one-flow synthetic approach to unsymmet-
rical sulfamides guided by bayesian optimization. Chemistry-Methods,
1(11):484–490, 2021.

[23] B. Tang. Orthogonal array-based latin hypercubes. Journal of the
American statistical association, 88(424):1392–1397, 1993.

[24] J. Vanschoren. Meta-learning. In Hutter et al. [9], pages 39–68.
[25] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine

learning, volume 2. MIT press Cambridge, MA, 2006.
[26] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Sequential model-

free hyperparameter tuning. In 2015 IEEE international conference on
data mining, pages 1033–1038. IEEE, 2015.

[27] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Two-stage transfer
surrogate model for automatic hyperparameter optimization. In Joint
European conference on machine learning and knowledge discovery in
databases, pages 199–214. Springer, 2016.

[28] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Scalable gaussian
process-based transfer surrogates for hyperparameter optimization. Ma-
chine Learning, 107(1):43–78, 2018.

[29] Y. Zhang, D. Apley, and W. Chen. Bayesian optimization for materials
design with mixed quantitative and qualitative variables. Scientific
Reports, 10(1):1–13, 2020.

[30] L. Zimme, M. Lindauer, and F. Hutter. Auto-pytorch tabular: Multi-
fidelity metalearning for efficient and robust autodl. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 43(9):3079 – 3090, 2021.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-169.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

