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Abstract—We propose the use of dual coding concatenation
for mitigation of post-shaping burst errors in probabilistic
amplitude shaping (PAS) architectures. The proposed dual coding
concatenation for PAS is a hybrid integration of conventional re-
verse concatenation and forward concatenation, i.e., post-shaping
forward error correction (FEC) layer and pre-shaping FEC layer,
respectively. A low-complexity architecture based on parallel
Bose–Chaudhuri–Hocquenghem (BCH) codes is introduced for
the pre-shaping FEC layer. Proposed dual coding concatenation
can relax bit error rate (BER) requirement after post-shaping
soft-decision (SD) FEC codes by an order of magnitude, resulting
in a gain of up to 0.25 dB depending on the complexity of post-
shaping FEC. Also, combined shaping and coding performance
was analyzed based on sphere shaping and the impact of shaping
length on coding performance was demonstrated.

Index Terms—Probabilistic amplitude shaping, forward error
correction, parallel codes, optical fiber communications.

I. INTRODUCTION

IN recent years, probabilistic constellation shaping for co-
herent optical communication systems has been widely

studied and became a mature technology for deployment [1].
The key enabler for probabilistic shaping in practical systems
was the introduction of probabilistic amplitude shaping (PAS)
[2]. PAS allows for low-complexity implementation of proba-
bilistic shaping into modern bit-interleaved coded modulation
(BICM) systems with a capability of decoupled design of
channel coding and shaping stages.

Many practical shaping approaches have been proposed
since the initial proposal of PAS. One class is based on target-
ing fixed distribution of amplitudes, referred to as distribution
matching (DM) — examples are constant-composition DM
(CCDM) [3], multiset-partion DM (MPDM) [4], [5], product
DM [6] and hierarchical DM [7]. Another class is based on
defining the most energy-efficient signal space for finite-length
shaping, referred to as spherical shaping (SS) [8], [9] — ex-
amples are shell mapping (SM) [10], [11], enumerative sphere
shaping (ESS) [12]–[14], and Huffman-coded sphere shaping
(HCSS) [15], [16]. Typically, DM-based approaches require
longer shaping lengths compared to SS-based approaches to
achieve the same performance. While the optimal performance
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for linear channels is achieved with asymptomatic infinite-
length shaping, for nonlinear fiber-optical channels the best
performance is achieved with finite-length shaping due to
complimentary nonlinearity mitigation gains. Specifically, for
SS-based approaches the optimal shaping length is in the range
of 100–200 amplitudes for long-haul links [14], [17] and 20–
50 amplitudes for highly nonlinear short-distance links [18]–
[20]. We note that short-length shaping is also advantageous
in terms of hardware complexity and latency.

Within conventional PAS architecture, which typically em-
ploys reverse concatenation of shaping and forward error
correction (FEC) stages, FEC encoding is performed on shaped
bits. We note that a common approach for FEC in PAS is a
concatenation of a powerful soft-decision (SD) code and a low-
complexity hard-decision (HD) code with a low overhead, e.g.,
low-density parity-check (LDPC) code and Bose–Chaudhuri–
Hocquenghem, (BCH) code, respectively.

At the receiver-side, shaped bits are first decoded and
then demapped (i.e., de-shaped) to information bits under
the assumption that all bits are correctly decoded (no er-
rors within shaping sequences). While state-of-the-art FEC
schemes achieve low output bit error rates (BERs), they
always have a non-zero probability of errors in practice. The
most commonly considered post-FEC BER threshold is 10−15,
which is used to determine acceptable performance after FEC
decoding for conventional uniform signalling. However, for
systems utilizing PAS architecture, BER enhancement may
occur after shaping demapping due to uncorrected errors
within shaped sequences after FEC decoding — a single bit
error within a shaped sequence will induce multiple errors of
bits (i.e., burst error) after shaping demapper. While some spe-
cific shaping mappers/demappers are proposed to reduce the
effect of BER enhancement [7], [21], they are not universally
applicable to all mapping/demapping schemes.

Fig. 1 shows BER enhancement as a function of shaping
length for 64-ary quadrature-amplitude modulation (64-QAM),
where all information bits are shaped and 50 % bits will be
in error on average when burst errors occur after shaping
demapping (note that BER enhancement varies with shaping
algorithm and error distributions). The BER enhancement
after de-shaping is approximately linear with the shaping
length. Accordingly, it is in favour of shorter-length shaping in
addition to aforementioned nonlinear gains in optical channels.

For conventional PAS with reverse concatenation, a typi-
cal solution against the BER enhancement is simply to use
stronger SD-FEC codes to decrease post-FEC BER such
that BER enhanced after shaping demapping is kept below
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Fig. 1. BER enhancement: system output BER vs. shaping length.

10−15. We propose an alternative solution based on dual
concatenation with pre-shaping (forward concatenation) and
post-shaping (reverse concatenation) FEC layers, which can
effectively mitigate the BER enhancement.

In this work, we extend our preliminary analysis of dual
concatenation for PAS, presented in [22]. First, we introduce
the concept of pre-shaping FEC for PAS and consider various
burst error correction coding bounds. We then propose a low-
complexity scalable architecture for correction of burst errors
in the pre-shaping FEC layer, which is based on parallel BCH
codes. Subsequently, a comprehensive performance analysis
for PAS is provided. The coding performance is characterized
in terms of the the impact of various shaping and coding
parameters. The combined shaping and coding performance is
then analyzed using SS-based shaping in both additive white
Gaussian noise (AWGN) and fiber-optical channels.

II. PRELIMINARIES

A. PAS architecture

Fig. 2 shows a diagram of PAS architecture with pre-shaping
and post-shaping FEC layers. This architecture employs a
dual concatenation framework which uses a joint forward
and reverse concatenation of the shaping and FEC coding.
Specifically, shaping precedes FEC coding in reverse concate-
nation, while opposite in forward concatenation. We note that
typical PAS systems use only reverse concatenation without a
dedicated pre-shaping FEC layer.

The key components of the PAS architecture are the shaping
mapper and demapper which perform mapping and demapping
of the stream of uniform input bits into unsigned probabilisti-
cally shaped amplitudes. Post-shaping systematic FEC coding
is performed on the bit-labels of the shaped amplitudes and
parity bits are added as signs of amplitudes. Signed amplitudes
which represent amplitude-shift keying (ASK) are then con-
catenated into symbols of a QAM format. The transmission
rate can be adapted by changing the amplitude shaping rate,
while keeping the post-shaping FEC code rate fixed if desired.
The pre-shaping FEC layer is placed outside the shaping layer
and designed to correct burst errors after shaping demapper
due to residual errors after post-shaping FEC decoding.

Symbol Mapper

Post-shap. FEC Encoder

Shaping Mapper

Amplitude to Bit Label

Channel

Symbol Demapper

Post-shap. FEC Decoder

Bit Label to Amplitude

Shaping Demapper

Pre-shap. FEC Encoder Pre-shap. FEC Decoder

Post-shaping 

FEC

Shaping

Pre-shaping 

FEC

Fig. 2. PAS architecture with dual concatenation having post-shaping inner
and pre-shaping outer FEC layers.

Fig. 3 shows framing and mapping of shaping sequences
and FEC codewords within PAS. The shaping rate (in bits per
unsigned amplitude, b/Amp) is defined as

RSh =
LDeSh

LAmp
Sh

=
LDeSh

LSh
(m− 1), (1)

where LAmp
Sh is the shaped sequence length in amplitudes, LSh

is the shaped sequence length in bits, LDeSh is the de-shaped
sequence length in bits, and m is the number of bit labels per
amplitude (i.e., m = log2M of M -ASK format). Typically,
LSh is fixed and LDeSh is varied with the shaping rate for
transmission rate. The maximum shaping rate is RSh = m −
1, which corresponds to uniform shaping, and the de-shaped
sequence is not longer than shaped sequence (LDeSh ≤ LSh).

For post-shaping FEC, we consider a typical concatenation
of powerful SD LDPC code and low-complexity HD BCH
codes (we note that post-LDPC interleaver can be also em-
ployed to distribute LDPC burst errors). The code rate is lower-
bounded by (m−1)/m at which all parity bits are assigned to
amplitude signs. To have higher code rates, some information
bits (referred to as unshaped bits) may be carried out on signs
of amplitudes besides parity bits. The overall code rate of
post-shaping FEC is given as

RPostSh
FEC = RPostSh

LDPC ·RPostSh
BCH =

m− 1 + γ

m
, (2)

where RPostSh
LDPC is the code rate of post-shaping LDPC code,

RPostSh
BCH is the code rate of post-shaping BCH code, and 0 ≤

γ ≤ 1 specifies the portion of unshaped bits. The length of
unshaped bits is LUnSh = γLSh/(m − 1) and the length of
parity bits is LPar = (1− γ)LSh/(m− 1).

B. Pre-shaping FEC

1) Burst error correction bounds: First, we consider
bounds on burst error correction — theoretical bounds: Rieger
bound and Hamming bound; as well as bounds on performance
of practical codes: Fire code, Reed–Solomon code, and BCH
code. These bound are summarized in Table I, where n is the
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Fig. 3. Framing and mapping within PAS architecture.

TABLE I
BURST ERROR CORRECTION BOUNDS

Type Bound

Rieger Bound k = n− 2l

Fire Code k = n− 3l

Reed–Solomon Code ksym = nsym − 2lsym,
lsym = 1+ b l+s−2

s
c with s being symbol size

Hamming Bound k = n−
⌈
log2(

∑t
l=0

(n
l

)
)
⌉

BCH Code k = n− l log2(n+ 1)

length of the code, k is the information length within codeword
(i.e., payload) and l is the length of the burst.

For Hamming bound and BCH code, we consider parallel
structures based on block interleaving to enhance burst error
correction ability of random error correction approaches. Inter-
leaving is performed in the following manner: block of input
bits of length n′ are written sequentially in rows of length
LInt (referred to as interleaving order) and output bits are
read sequentially from columns of length n = n′/LInt. Block
interleaving is used to spread the burst errors among multiple
codewords, such that short code with reduced error correcting
ability can be used. E.g., for the burst of length l we can use
the code of length n′ with l-error correcting ability, while
with LInt-way interleaving we can use the code of length
n = n′/LInt with error correcting ability of l/LInt. When
the interleaving order equals the burst length (LInt = l) we
refer to it as a fully-parallel structure.

Fig. 4 shows comparison of burst error correction bounds
in terms of required code overhead for single burst correction.
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Fig. 4. Burst error correction approaches for single burst correction.

Fig. 4 (a) demonstrates the required code overhead as a func-
tion of burst length. Reed–Solomon code provides excellent
burst error correction capability and can closely approach
Rieger bound. Fire code is also an efficient approach, which
requires about 30 % higher overhead compared to Rieger
bound. For random error correction approaches (Hamming
bound and BCH code), required overheads are significantly
higher. However, fully-parallel/interleaved structures can sub-
stantially improve burst error correction ability.

Fig. 4 (b) shows the required code overhead as a function of
interleaving/parallelization order for BCH code and Hamming
bound. We note that required overhead for fully-parallel BCH
code is matched with Hamming bound, since only single error
needs to be corrected per each codeword. While random error
correction approaches are in general less efficient for burst
error correction, parallel BCH code can offer low complexity,
scalability and ability to correct multiple bursts.

2) Parallel BCH code: For pre-shaping FEC layer we
consider parallel BCH structure based on block interleaving
of shaping sequences according to Fig. 5. Each column in the
LInt-way interleaved structure is a codeword of a BCH code
of length n = n′/LInt. We consider fully parallel structure,
where we utilize LInt = LDeSh + LUnSh-way interleaving. We
note that in the case of full interleaving we have no more than
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Fig. 5. Parallel structure for pre-shaping BCH code.

t = T errors per parallel codeword after interleaving when T
bursts occurs within a non-interleaved structure.

This structure enables parallel encoding/decoding, suited for
high-throughput systems. It can be easily scaled according to
the shaping rate. This parallel structure is initially designed for
the maximum shaping rate (i.e., LDeSh = LSh). Then, adaptiv-
ity is achieved by subsequently disabling parallel encoders.
Furthermore, separate BCH codes can be used for shaped
and unshaped bits, since the requirement for error correcting
ability can be different — for unshaped bits there is no BER
enhancement and, hence, potentially weaker BCH code may
be used to minimize the overall overhead. In Fig. 5 greyed
blocks represent unshaped bits. Respective parity bits of BCH
codes are kept within unshaped and shaped blocks of bits.

We also note that the latency of the pre-shaping parallel
BCH structure is expected to be relatively low compared to
the post-shaping FEC. The pre-shaping latency is mainly due
to the interleaver length, while the decoding latency for short
parallel BCH codes can be maintained low. The post-shaping
latency is mainly dominated by iterative LDPC decoding and
post-LDPC interleaver, and expected to be significantly higher.

C. Transmission rate

The transmission rate in bits per one-dimensional symbol
(b/1D) for conventional PAS systems with reverse concatena-
tion can be expressed as

RTr =
LDeSh + LUnSh

LAmp
Sh

=
RShLSh/(m− 1) + γLSh/(m− 1)

LSh/(m− 1)
= RSh + γ,

(3)

where γ = 1−m(1−RPostSh
FEC ) = 1−m(1−RPostSh

LDPC ·RPostSh
BCH ).

For PAS with dual concatenation based on BCH codes in pre-
shaping FEC layer transmission rate is expressed as

RTr =
LDeSh ·RPreSh

BCH + LUnSh ·RPreSh′
BCH

LAmp
Sh

= RSh ·RPreSh
BCH + γ ·RPreSh′

BCH ,

(4)

1.0 1.2 1.4 1.6 1.8 2.0
Shaping Rate, b/Amp

1.2

1.4

1.6

1.8

2.0

Tr
an

sm
is

si
on

 R
at

e,
 b

/1
D

1.00 1.05 1.10 1.15
1.12

1.17

1.22

1.27 1.85 1.90 1.95 2.00
1.96

2.01

2.06

2.11

Post-shaping: OHPostSh
BCH =1.49

Pre-shaping (i): OHPreSh
BCH =1.49 OHPreSh

BCH =1.49
Pre-shaping (ii): OHPreSh

BCH =3.02, OHPreSh
BCH =1.49

(a)

1.0 1.2 1.4 1.6 1.8 2.0
Shaping Rate, b/Amp

40

45

50

55

60

65

70

75

E
ff

ec
tiv

e 
C

od
in

g 
O

ve
rh

ea
d,

 %

Post-shaping: OHPostSh
BCH =1.49

Pre-shaping (i): OHPreSh
BCH =1.49 OHPreSh

BCH =1.49
Pre-shaping (ii): OHPreSh

BCH =3.02, OHPreSh
BCH =1.49

(b)

Fig. 6. Transmission rate and effective coding overhead vs. shaping rate for
different coding options: (a) transmission rate; (b) effective coding overhead

where RPreSh
BCH is the rate of the pre-shaping BCH code for

shaped bits, and RPreSh′
BCH is the rate of the pre-shaping BCH

code for unshaped bits.
We also define effective coding overhead for PAS as

OHEff =
1−REff

REff
, (5)

where REff is the effective coding rate calculated as

REff =
RTr

RSh + 1
, (6)

where denominator represents the uncoded transmission rate
(i.e., maximum transmission rate for a given shaping rate).

Fig. 6 shows the comparison of effective coding overhead
and corresponding transmission rate as a function of shaping
rate for the cases without pre-shaping or post-shaping BCH
code. The base modulation format for PAS is 64-QAM (i.e.,
m = 3), and post-shaping LDPC code is used for both
cases at a rate of RPostSh

LDPC = 0.72. As shown in Fig. 6 (b),
post-shaping coding is less efficient compared to pre-shaping
coding, since not the full alphabet of bit sequences of length
LSh is utilized for signalling, and coding protects all possible
sequences, causing an extra overhead. Specifically, pre-shaping
BCH codes having an overhead of 1.49 % can achieve lower
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effective coding overhead than post-shaping BCH code having
the same code overhead of 1.49 %, for a shaping rate range of
1 ≤ RSh < 2. We note that post-shaping coding is performed
on bit sequences with extended length due to shaping, whereas
pre-shaping coding is done on shorter bit sequences.

The above-mentioned gain motivates us to consider the use
of stronger pre-shaping BCH codes having higher overhead,
without sacrificing the total transmission rate. For example,
the pre-shaping BCH code can have an overhead up to
3.02 % to achieve higher transmission rates than the case of
the conventional reverse concatenation for a shaping rate of
RSh = 1 b/Amp. The optimization of the overhead adjustment
will be discussed further in the following sections.

III. ERROR RATES EVALUATION

We evaluate the performance of post-/pre-shaping BCH
codes. As simulating the whole systems at a target BER
of 10−15 is not practical and the performance may highly
depend on particular LDPC codes and shaping algorithms, we
mainly focus on analytical derivation to give more generic
insights. Note that the post-shaping FEC layer uses a con-
catenation of LDPC and BCH codes. We consider numerically
pre-characterized LDPC codes and assume that post-LDPC
errors are distributed randomly (with the use of post-LDPC
interleaver). We consider BCH codes (n, k, t), where n is the
code length (n = 2s − 1), k is the information length within
codeword (k = n− t · s), and t is the error correction ability
of the code. The code rate of BCH codes is then defined as

RBCH =
k

n
=
n− s · t

n
, (7)

while corresponding code overhead is expressed as

OHBCH =
1−RBCH

RBCH
=

s · t
n− s · t

. (8)

A. Shaped sequence error probability and BER enhancement

Probability of having at least one bit error in the shaped
sequence (before shaping demapping) is given as

P ShSeq
Err = 1− (1− BERSh)

LSh ≈ BERSh · LSh, (9)

where BERSh is the expected BER at the output of post-
shaping FEC. After de-shaping the length of the burst error
is LDeSh. The total BER after de-shaping is a combination
of enhanced BER of shaped bits and non-enhanced BER of
un-shaped bits, as follows:

BERDeSh =
LDeSh · BERSh

DeSh + γLSh/(m− 1) · BERUnSh
DeSh

LDeSh + γLSh/(m− 1)
,

(10)
where BERUnSh

DeSh = BERSh and enhanced BER after de-shaping
can be expressed as

BERSh
DeSh =

1

N

[
p · LDeSh︸ ︷︷ ︸

Errors per seq.

·P ShSeq
Err

N

LDeSh︸ ︷︷ ︸
Number of seq.

]

= p · P ShSeq
Err ≈ p · BERSh · LSh,

(11)

where p is the probability of flipped bit in a burst after de-
shaping and N is the length of observation window for BER

measurements. Note that while with small shaping rate the
length of the bursts after de-shaping reduces, the number of
de-shaped sequences within the same observation window in-
creases. Therefore, according to (11), BERDeSh is independent
of LDeSh and the shaping rate.

B. Output BER for post-shaping BCH code

We here estimate BER at the output of post-shaping BCH
code. We assume that BCH code corrects all l errors for
l ≤ t within codeword and no errors are corrected if l > t.
Probability of having l bit errors within codeword is expressed
with binomial distribution probability mass function (PMF) as

PErrors(l) =

(
n

n− l

)
(1− BERin)

n−l(BERin)
l, (12)

where BERin is the input BER for BCH decoding. Output
BER after the post-shaping BCH code is then given as

BERout =
1

n

∑
l>t

l · PErrors(l)︸ ︷︷ ︸
Uncorrected errors

= BERin −
1

n

∑
l≤t

l · PErrors(l)︸ ︷︷ ︸
Corrected BER

.
(13)

Note that for our case we have BERSh = BERout and BERin
is post-LDPC BER. The above binomial distribution assumes
sufficiently long interleaving to realize random bit errors after
LDPC decoding. We have verified that our analysis agrees
well with simulation results for such a case. However, when
the post-LDPC interleaver order is limited, it is known that the
error patterns are correlated to cause burst errors in practice.
Even for that case, correlated bit errors can be dealt with a
slight modification of the binomial distribution. In addition,
(13) still holds given a true distribution PErrors(l).

C. Output BER for pre-shaping BCH code

For the estimation of BER performance of pre-shaping
FEC layer, we consider fully parallel/interleaved structure with
(n, k, t) BCH codes. First, we consider the worst case when
all bits are flipped in a burst. Probability of having T errors
per each parallel codeword (equivalently, T bursts of length
LDeSh within non-interleaved structure of length n ·LDeSh) can
be calculated using binomial distribution PMF as

PBursts(T ) =

(
Nseq

Nseq − T

)(
1−P ShSeq

Err

)Nseq−T (
P ShSeq

Err

)T
, (14)

where Nseq is the number of de-shaped sequences within non-
interleaved structure (which equals to the length of the code
n in the case of full interleaving). The output BER is then
calculated as

BERout = P Sh
Error −

1

n

∑
T≤t

T · PBursts(T )︸ ︷︷ ︸
Corrected BER

. (15)

Next, considering the realistic case that probability of flipped
bit in a burst is p, the probability of having l flipped bits
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per parallel codeword when T bursts occurs can be expressed
using binomial distribution PMF as

PErrors(l|T ) =

{(
T

T−l
)
(1− p)T−l(p)l, l ≤ T,

0, l > T.
(16)

The total probability of having l errors per codeword in the
parallel structure can be expressed as

PErrors(l) =

Nseq∑
T=0

PErrors(l|T ) · PBursts(T ). (17)

The output BER for pre-shaping BCH code is given as

BERout = p · P ShSeq
Err − 1

n

∑
l≤t

l · PErrors(l)︸ ︷︷ ︸
Corrected BER

= p · P ShSeq
Err − 1

n

[∑
l≤t

l ·
Nseq∑
T=0

PErrors(l|T ) · PBursts(T )

]
︸ ︷︷ ︸

Corrected BER

,

(18)

where the first term represents enhanced BER after shaping
demapper (BERSh

DeSh). We note that this analysis is specifically
for shaped bits, whereas BER evaluation for unshaped bits is
equivalent to post-shaping BCH analysis.

D. Output background block error rate (BBER)

We consider optical transport network (OTN) framing for
systems operating beyond 100 Gbit/s — optical transport unit
Ck (OTUCk, where Ck index refers to the approximate bit-rate
of k×100 Gbit/s) framing is defined in ITU-T G.709 standard
[23]. The length of OTUCk frames is LOTU = 130560×k bits
(4080 × 4 × k bytes). Note that FEC for the OTUCk signals
is interface/vendor specific and not included in the OTUCk
definition in ITU-T G.709 standard.

The performance of systems with OTN framing is typically
evaluated using BBER or severely errored second rate (SESR)
[24]. SESR is based on a one-second period which contains
≥ 15% errored frames. BBER is the ratio of errored OTU
frames to the total number of transmitted frames, excluding
those occurred during severely errored seconds. Throughout
the paper we focus on BBER metric besides BER.

OTUCk frames may consist of multiple de-inteleaved blocks
(which consist of multiple pre-shaping BCH codewords). In
such case output BBER after de-shaping and pre-shaping
decoding is calculated as

BBER = 1−
[
PPreSh
Errors(l ≤ t) · PPreSh′

Errors (l ≤ t)
]NOTU

block

, (19)

where NOTU
block = LOTU/(nLDeSh + nLUnSh) is the number

of de-interleaved blocks, PPreSh
Errors(l ≤ t) is the probability of

decoding success of pre-shaping BCH code for shaped bits,
and PPreSh′

Errors (l ≤ t) = PErrors(l ≤ t)LUnSh is the probability
of decoding success of pre-shaping BCH code for unshaped
bits. When outer coding is not used, BBER is calculated with
(19) by setting error-correcting abilities of the codes to zero.
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E. Error rates analysis

Fig. 7 shows BER analysis of post-shaping and pre-shaping
BCH codes, respectively, for the configurations “A1” and “A6”
in Table II. The modulation format is 64-QAM, shaping length
is LSh = 64, and shaping rate is RSh = 1. The considered
code length is n = 4095. Probability of flipped bit in a burst
after shaping demapping is p = 0.5.

We present the dependence of output de-shaped BERs for
shaped bits, unshaped bits, and also total resulted BER as a
function of input BER (post-LDPC BER). Here, we choose
overheads for outer BCH code for unshaped bits such that
BER for unshaped bits is kept below BER for shaped bits. It
is seen in Fig. 7 that post-shaping BCH code is not effective
compared to pre-shaping BCH code when LDPC codes show
a moderate BER below about 2× 10−6.

Fig. 8 shows performance of the same BCH configurations
with probabilities of flipped bit p = 0.5, 0.35, 0.2. Lower
flipping probability results in reduced BER enhancement,
which relaxes post-LDPC BER requirement to achieve output
BER below 10−15 for both post-shaping and pre-shaping BCH
codes. However, lower flipping probability is more beneficial
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TABLE II
CODE PARAMETERS: n = 4095

Configuration OHPostSh
BCH OHPreSh

BCH OHPreSh′
BCH RTr, b/1D

A1 (pre-sh.) 0.00 3.02 1.49 1.1284
A2 0.29 2.40 1.19 1.1284
A3 (optimal) 0.59 1.79 0.89 1.1285
A4 0.89 0.89 0.89 1.1310
A5 1.19 0.29 0.29 1.1314
A6 (post-sh.) 1.49 0.00 0.00 1.1284

TABLE III
CODE PARAMETERS: n = 8191

Configuration OHPostSh
BCH OHPreSh

BCH OHPreSh′
BCH RTr, b/1D

B1 (pre-sh.) 0.00 2.77 2.44 1.1292
B2 0.16 2.44 2.27 1.1293
B3 0.32 2.27 1.12 1.1292
B4 0.48 1.94 0.96 1.1292
B5 0.64 1.61 0.80 1.1293
B6 0.80 1.29 0.64 1.1293
B7 (optimal) 0.96 0.96 0.48 1.1292
B8 1.12 0.48 0.48 1.1306
B9 1.29 0.16 0.16 1.1308
B10 (post-sh.) 1.45 0.00 0.00 1.1291

for pre-shaping BCH code. With p = 0.35 the required post-
LDPC BER is approximately the same for both post-shaping
and pre-shaping BCH codes, while with p = 0.2 higher post-
LDPC BER can be tolerated with pre-shaping BCH.

We note that probability of flipped bit and related BER
enhancement depend on the specific design of shaping map-
ping/demapping (i.e., specific algorithm) [7], [21]. For further
analysis, we assume p = 0.5, which represents the worst case
of BER enhancement — i.e., a single error at the input of
a shaping demapper results in the whole sequence demapped
incorrectly, and therefore on average half of the bits are in
error within de-shaped sequence. We also emphasize that lower
probability of flipped bit can be more advantageous for pre-
shaping BCH configurations.

IV. OPTIMAL DUAL CODING CONCATENATION

The proposed dual coding concatenation for PAS enables
flexible configurations and heterogeneous assignments for pre-
shaping and post-shaping error patterns. The joint use of pre-
shaping and post-shaping BCH codes shows a remarkable
performance improvement by optimizing the trade-off between
overhead and error correction ability for respective BCH codes
to deal with post-shaping burst errors. In this section we
analyze the coding performance of dual concatenation systems
to optimize the configuration in terms of BER and required
SNR. We specifically investigate the impact of various shaping
and coding parameters: shaping length, shaping rate, BCH
code length and overhead.

Performance analysis is mainly based on two metrics: post-
LDPC BER threshold, which is a required BER after post-
shaping LDPC code; and required SNR (per bit) at the input
of LDPC code for a target system performance. For target
system performance we use a BER of 10−15 and BBER of
10−10. The base modulation format for PAS is 64-QAM. For
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the results in Sections IV-A – IV-D and IV-F, the considered
code rate of post-shaping LDPC codes is 0.72.

A. Optimal dual-concatenation of post-shaping and pre-
shaping BCH codes

We consider various configurations for concatenation of pre-
/post-shaping BCH codes. The overhead adjustment is listed
in Tables II and III for BCH codes of n = 4095 and n = 8191
bits, respectively. For the conventional reverse concatenation
(i.e., “A6” and “B10” without pre-shaping BCH code), we
consider an overhead for post-shaping BCH code of about
1.5 % (minor deviation due to finite granularity in adjustment
of BCH parameters). We then varied the overhead for post-
shaping BCH code (up to 1.5 %) and defined complimentary
overheads for pre-shaping BCH codes such that the transmis-
sion rate (and effective coding overhead) is closely matched
with the case of the conventional reverse concatenation. Note
that higher overheads can be used for pre-shaping BCH codes
compared to post-shaping BCH code, while the transmission
rate is always not lower than the reverse concatenation case.

Fig. 9 shows the required post-LDPC BER threshold over
different configurations of BCH concatenation. Here, we con-
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sider a shaping rate of RSh = 1 b/Amp and a shaping
length of LSh = 64. The left-end points (A1 and B1) and
right-end points (A6 and B10) represent post-shaping BCH
only and pre-shaping BCH only configurations, respectively,
while points in the middle represent dual coding concatenation.
When comparing end points, we can observe that post-shaping
BCH slightly outperforms pre-shaping BCH configuration (for
shorter code length the difference is negligible). With the
optimal dual concatenation, the post-LDPC BER threshold
can be improved approximately by an order of magnitude
compared to only post-shaping BCH configuration — from
3 × 10−6 to 3 × 10−5 for n = 4095 and from 2 × 10−5 to
2 × 10−4 for n = 8191 for a target output BER of 10−15.
Similar trends are observed for target output BBER of 10−10.

Fig. 10 shows overall output system BER as a function of
post-LDPC BER for post-shaping BCH only, pre-shaping BCH
only, and optimal dual-BCH concatenation. We can see that
the gain of the proposed dual concatenation is more significant
for a system that requires more stringent BER target.

B. Impact of code overhead

Fig. 11 shows performance of post-shaping, pre-shaping
and optimally dual-concatenated BCH coding configurations
across effective coding overheads and corresponding trans-
mission rates. In general, increased effective overhead result in
more relaxed post-LDPC BER threshold — e.g., for optimally
dual-concatenated configuration the post-LDPC BER thresh-
old is increased from 2× 10−6 to 3× 10−4 when increasing
effective overhead from 75 % to 82.5 % for n = 4095. It is
important to note that for lower overheads pre-shaping BCH
configuration becomes more advantageous — e.g., pre-shaping
BCH outperforms post-shaping BCH at low overheads for
n = 4095. Similar trends are observed for n = 8191.

C. Impact of shaping length and shaping rate

Fig. 12 shows performance of BCH coding configurations
in terms of shaping lengths and shaping rates. In Fig. 12 (a)
we considered shaping rates of RSh = 0.5, 1 and 1.5 b/Amp
for a shaping length from LSh = 8 to 1024 (equivalently,
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Fig. 12. Threshold for post-LDPC BER. Shaping length and rate sweep.
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LAmp
Sh = 4 through 512). In Fig. 12 (b) we considered shaping

lengths of LSh = 16, 64 and 256 for a shaping rate from
RSh = 0.5 to 2 b/Amp (where RSh = 2 b/Amp corresponds to
uniform shaping). We note that shaping rates below RSh = 0.5
b/Amp are not justified with 64-QAM base modulation format
as lower-order QAM may be more relevant for such cases.

For short-length shaping, performance of pre-shaping BCH
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is close to post-shaping BCH and even superior for RSh below
1 b/Amp, while for long-length shaping the performance of
pre-shaping BCH is considerably worse. With optimally dual-
concatenated BCH systems, the performance can be substan-
tially improved and the gain over post-shaping BCH case is
nearly constant within the considered shaping length range.

With respect to the shaping rate, for lower shaping rate
we observe improved performance of pre-shaping and dual-
concatenated BCH configurations. This is because of the
increased code overheads for pre-shaping BCH codes due
to the transmission rate gain over the conventional reverse
concatenation. We note that this effect is more impactful for
pre-shaping BCH configuration.

Fig. 13 demonstrates the respective code overheads of pre-
shaping BCH codes (for shaped and unshaped bits) and post-
shaping BCH codes as a function of shaping rate when
LSh = 64. For dual-concatenated and pre-shaping configura-
tions, optimal code overheads for pre-shaping BCH codes are
increased with lower shaping rate (transmission rate is kept
the same). We note that impact of shaping length on code
overheads is insignificant.

TABLE IV
LDPC CODE PARAMETERS

Parameter Value
Code rate 0.72

Code length, bits 1650, 3300, 6600, 13200, 26400, 52800
Net coding gain 9.1, 10.1, 11.1, 12.3, 12.7, 13.0dB (32-ite)
Decoding iterations 4–32
Degree design Pareto-optimal [25]
Variable-node degree λ(x) = 0.45x2 + 0.44x4 + 0.11x16

Check-node degree ρ(x) = 0.11x15 + 0.89x16

Girth Cycle-8 designed by PEG [26]
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Fig. 16. Characterization of LDPC codes: BER vs. SNR (per bit).

D. Impact of post-shaping BER threshold

Fig. 14 shows performance in terms of system target BER
threshold. For conventional post-shaping BCH configuration
we observe a stronger dependence on the system target BER,
requiring lower post-LDPC BER for more stringent system
BER target. Dual-concatenated BCH configuration provides
more significant gain for a system that requires stringent
system BER target and is robust across wide target BER range.

E. Impact of post-shaping LDPC code rate

Fig. 15 shows performance vs. post-shaping LDPC code
rate. The LDPC code rate affects the proportion of unshaped
bits in relation to shaped bits — i.e., higher code rate results
in larger portion of unshaped bits, which results in slightly re-
duced BER enhancement. This has negligible impact on post-
LDPC BER threshold for post-shaping and dual-concatenated
BCH configurations. For pre-shaping BCH configuration, a
non-significant decrease in post-LDPC BER is observed for
higher LCPC code rates and lower shaping rates.

F. Required SNR for post-shaping LDPC codes

For required SNR analysis, we consider numerically pre-
characterized state-of-the-art post-shaping LDPC codes based
on the iteration-aware Pareto-optimal irregular design method
proposed in [25]. The Pareto-optimal code was demonstrated
to be effective for realizing Tb/s experimental systems [27].
The girth is optimized by progressive edge-growth (PEG) [26].
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Fig. 17. Required SNR for post-shaping LDPC code.

Code parameters are summarized in Table IV. The consid-
ered code rate is 0.72, code lengths are 1650, 3300, 6600,
13200, 26400, 52800, and LDPC decoding is performed using
the layered sum-product algorithm over 4–32 iterations. The
characterization of some LDPC code configurations in terms
of BER as a function of SNR per bit is shown in Fig. 16. Note
that those codes achieve an excellent performance close to the
Gallager’s random coding bound (RCB) [28], [29] with a gap
of about 0.3 dB for 32-iteration decoding.

Figs. 17 and 18 show required SNR per bit for LDPC de-
coding with BCH concatenation configurations corresponding
to Figs. 9 and 12, respectively. We considered the code length
of 13200 and decoding over 8 and 32 iterations. In Fig. 17,
for 8-iteration decoding, the SNR gain is greater than 0.1 dB,
while for 32 decoding iterations the gain is around 0.05 dB.
Fig. 18 (a) shows constant SNR gain with dual-concatenation
over the whole shaping length range — around 0.1 dB with
decoding over 8 iterations and 0.05 dB with 32 iterations.
Fig. 18 (b) shows SNR variations of 0.05 dB and 0.02 dB for
dual-concatenation with 8 and 32 decoding iterations.

Fig. 19 shows performance over the number of decoding
iterations and code length for post-shaping LDPC code. In
general, higher SNR gains with dual-concatenation can be
achieved when using lower-complexity LDPC codes — i.e.
shorter code length and less decoding iterations. For the code
length of 13200, the SNR gain is increased to 0.25 dB with
4 decoding iterations compared to 0.1 dB with 8 decoding
iterations. With relation to the code length, the SNR gain is
increased to 0.2 dB from 0.05 dB when reducing the code
length from 13200 to 1650 with 32 decoding iterations.

V. SPHERE SHAPING WITH DUAL CODING CONCATENATION
IN PRACTICAL CHANNELS

We previously focused on coding gain for burst-error correc-
tion, but shaping gain was omitted for analysis. In this section,
we further evaluate the combined shaping and coding perfor-
mance in a system utilizing the state-of-the-art energy-efficient
SS-based shaping in AWGN and fiber-optical channels. The
base modulation format is dual-polarization (DP) 64-QAM.
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Fig. 18. Required SNR for post-shaping LDPC code.

A. Linear AWGN channels

First, we consider numerically simulated AWGN channels.
Fig. 20 shows required channel SNR as a function of shaping
length. The shaping rate was set to RSh = 1.7 b/Amp. The
dual-concatenated coding configuration provides SNR gain of
0.1 dB for 8 iterations of LDPC decoding and 0.05 dB for
32 iterations. Also, it is important to note that maximum
performance for pre-shaping coding configuration is observed
at a finite shaping length. Classic assumption is that longer
length shaping offers better performance in AWGN channel.
However, as shown, coding aspect can affect this statement
in reality. It is expected that for post-shaping and dual-
concatenated configurations the similar trends will be seen
beyond simulation range of Fig. 20.

B. Nonlinear fiber-optic channels

For fiber-optical channels, we consider long-haul trans-
mission link consisting of 30 spans of 100 km standard
single-mode fiber, simulated with a full-field split-step Fourier
method (SSFM). The parameters of the simulated system are
listed in Table V. Laser phase noise and polarization mode
dispersion effects are excluded from the simulated model.

Fig. 21 shows SNR margin as a function of shaping length.
The shaping rate is RSh = 1.7 b/Amp, which is the optimal
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Fig. 19. Required SNR for post-shaping LDPC code: (a) number of decoding
iterations; and (b) code length sweep.

TABLE V
SSFM SIMULATION PARAMETERS

Parameter Value
Modulation Format DP 64-QAM
Symbol Rate 28 GBd
Pulse Shaping Nyquist
Number of Channels 9

Channel Spacing 30 GHz
Nonlinear Coefficient 1.3 /W/km
Dispersion Coefficient 16 ps/nm/km
Fiber Attenuation 0.2 dB/km
Amplification Lumped (EDFA)
Noise Figure 4 dB
SSFM Step-size 0.1 km
Oversampling Factor 32

rate for considered transmission link. The SNR margin is
defined as the difference between received SNR (calculated on
received symbols) and required SNR (from Fig. 20). Negative
SNR margin means that desired target BER of 10−15 cannot
be achieved. Maximum performance is observed at finite
shaping length, which was also demonstrated in [14], [20].
More importantly, we can observe that the optimal shaping
length depends on number of decoding iterations for LDPC
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Fig. 20. AWGN Performance of sphere shaping with LDPC codes for a
shaping rate of 1.7 b/Amp and a target BER of 10−15. Shaping length sweep.
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Fig. 21. Fiber-optical channel performance: 9 channels (28 GBaud on 30 GHz
grid) 30 spans of 100 km SSMF. Sphere shaping with LDPC codes for shaping
rate of 1.7 b/Amp. Shaping length sweep.

code. With lower-complexity LDPC decoding the optimal
range is shifted towards shorter shaping length, which is more
pronounced for pre-shaping coding case and less pronounced
for post-shaping and dual-concatenated coding systems.

VI. DISCUSSION AND CONCLUSIONS

In this work we demonstrated the concept of dual coding
concatenation for PAS, which can effectively mitigate the
impact of post-shaping burst errors to improve overall sys-
tem performance. Specifically, dual-concatenation architecture
based on parallel BCH codes for pre-shaping and post-shaping
FEC layers was proposed and analyzed. This architecture
offers flexibility for shaping rate adaptation and potentially
reduced implementation complexity.

We studied coding performance in terms of the impact of
various shaping and coding parameters. In the case of strong
LDPC codes with steep waterfall curve, pre-shaping BCH
configuration (without post-shaping BCH) can be beneficial
due to lower bit throughput through pre-shaping FEC layer,
while the SNR variation in performance is negligible. In the
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case of low-complexity LDPC codes, SNR gain of up to
0.25 dB is demonstrated with dual-concatenated configuration.
Also, for short-length shaping pre-shaping-only configuration
can provide similar performance to that of the standard re-
verse concatenation. Furthermore, we demonstrated that for
mapping/demapping algorithms with reduced BER enhance-
ment pre-shaping BCH configuration may offer even higher
improvement. In addition, we note that pre-shaping BCH
configuration may further benefit from simplified design of
post-shaping FEC. While dual-concatenated and post-shaping
BCH configuration require post-LDPC interleaver, pre-shaping
configuration does not necessarily require post-LDPC inter-
leaver, leading to a significant reduction in overall latency.
These scenarios are the subject for the further analysis.

Finally, we analyzed combined shaping and coding system
performance based on sphere shaping in AWGN and fiber-
optical channels. For AWGN channel, we demonstrated that
maximum performance can be achieved using finite shaping
length, while typical assumption is that maximum performance
is related to infinite length shaping. For fiber-optical channel,
we demonstrated that optimal shaping length range depends
on the performance of post-shaping SD FEC code (e.g. LDPC
code). Less powerful post-shaping SD code results in optimal
shaping length to be shifted towards shorter lengths.
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