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Constrained Smoothers for State Estimation
of Vapor Compression Cycles
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Abstract— State estimators can be a powerful tool in the
development of advanced controls and performance monitoring
capabilities for vapor compression cycles, but the nonlinear and
numerically stiff aspects of these systems pose challenges for the
practical implementation of estimators on large physics-based
models. We develop smoothing methods in the extended and
ensemble Kalman estimation frameworks that satisfy physical
constraints and address practical limitations with standard
implementations of these estimators. These methods are tested
on a model built in the Julia language, and are demonstrated to
successfully estimate unmeasured variables with high accuracy.

Index Terms— Vapor compression cycle, state estimation,
constrained smoothing, ensemble Kalman, extended Kalman

I. INTRODUCTION
Vapor compression cycles are positioned to play an in-

creasingly important role in our society, as they represent
an effective means to decarbonize energy networks by sup-
planting fossil fuel-based heating systems and provide a
varying demand-side load for renewable energy resources,
and are a key technology for ameliorating the consequences
of climate change on human health. Unfortunately, many
common working fluids used in this equipment also raise
significant environmental concerns, as their global warming
potential is generally hundreds to thousands of times worse
than CO2 [1]. Because of their prevalence and connection to
a broad range of applications, technologies to improve the
operation and performance of vapor compression cycles have
the potential to make a significant impact in the future.

State estimation methods can be an important tool in
the development of these thermofluid systems because their
spatially distributed construction, limited sensor availability,
and long equipment lifetimes can make it difficult to observe
a variety of salient information relevant to either control or
fault diagnostics for the system under study. For example,
the high cost of pressure or mass flow rate sensors often
precludes their use in commercially available equipment,
and control architectures that depend upon observations of
these or other unmeasurable quantities to attain performance
improvements are not realizable without such information.
Such measurements could be used to assess the amount of
subcooled refrigerant in a condensing heat exchanger for a
controller which optimizes the efficiency of the heat transfer
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process. Moreover, the retrospective analysis of operational
data can enable fault diagnostics for the early identification
of performance degradation before the accumulated effects
of efficiency loss result in significant energy waste.

Physics-based behavioral models of these systems pose
distinct challenges when used in common approaches for
state estimation. Heat and fluid flow in the heat exchangers
(HEXs) used in these systems is governed by nonlinear par-
tial differential equations (PDEs) that relates the conjugate
heat transfer to the refrigerant dynamics, which is nonlinear
and has discontinuous derivatives at the liquid and vapor
saturation curves. These PDEs can be discretized into large
sets of index-1 nonlinear differential algebraic equations
(DAEs) which are numerically stiff, with time constants
that range from milliseconds to hours, and require solvers
that are able to correctly manage the implicit discontinuities
related to the phase-change behavior of common refrigerants.
System representations that use finite volume discretizations
of the HEX behavior typically consist of hundreds of states.

A particular focus of previous work into estimation meth-
ods for these systems has been on the development of
advanced control methods, such as model predictive control
(MPC). As an example, Bortoff et al [2] used a Kalman
filter for a reduced order model of a multi-terminal vapor-
compression cycle to design an MPC algorithm with good
robustness properties that meets a specified set of control
objectives and satisfies a range of operational constraints.
Along similar lines, Krupa et al [3] also employed an
Kalman filter in the design of a linear MPC algorithm for
a multi-terminal vapor-compression cycle, and demonstrated
its efficacy on both a linear and nonlinear model of the plant.

As the dynamics of the overall cycle are dominated by the
heat exchangers, these components have also been a topic
of particular emphasis for state estimation research. Cheng,
He, and Asada [4] developed a nonlinear observer for a
reduced-order model of a HEX that accurately predicts both
the evaporating temperature and two-phase length during and
after a startup transient for an experimental system. More
recently, Ghousein and Witrant [5] developed and proved the
convergence of a boundary observer for a concentric CO2

HEX using a Lyapunov analysis, and show initial results
using a 1-D multiphase flow model.

While this prior work has demonstrated the efficacy of
these approaches on relatively low-order component and sys-
tem models, there are a wide variety of potential applications
of this state estimation techniques for larger and more com-
plex cycles that are in use today. Methods that demonstrate
good performance on larger variable refrigerant flow (VRF)



Fig. 1. Structure of a vapor compression cycle.

systems with 3 or more multiphase heat exchangers and
provide more granular information about the spatial variation
in the heat transfer and fluid flow throughout the system
could be used to improve performance monitoring tools and
provide important feedback in the system design process.

The present work is focused on the development and appli-
cation of nonlinear state estimation techniques in a smooth-
ing context to obtain information about vapor compression
cycle performance that is either theoretically or practically
unmeasurable from an existing set of observations. We adapt
two common state estimation methods, the extended Kalman
smoother (EKS) and ensemble Kalman smoother (EnKS), to
this application by enforcing physics-based constraints which
might be otherwise violated during the smoothing process,
and apply these methods to large-scale, numerically stiff, and
nonsmooth models of the cycle.

In Section 2, we provide an overview of the vapor-
compression cycle model and briefly discuss its implemen-
tation in Julia along with key enabling capabilities of the
modeling environment. We then describe the theoretical
development of the constrained EKS and the constrained
EnKS for this application in Section 3. In Section 4, we
provide some results demonstrating the performance of these
methods, and then briefly summarize this work and indicate
directions for future investigations in Section 5.

II. MODEL & IMPLEMENTATION

A vapor compression cycle that can vary the heating or
cooling capacity delivered to an occupied space, illustrated in
Figure 1, consists of a variable-speed compressor, variable-
position expansion device, and two refrigerant-to-air HEXs
with variable speed fans. This system transports thermal
energy from the air passing through the evaporating HEX
to the air passing through the condensing HEX via the
refrigerant by using the latent heat of condensation and
evaporation, where the compressor can operate efficiently at
pressures for which the refrigerant evaporating temperature
can be set lower than common occupied space temperatures,
while the refrigerant condensing temperature can be set
higher than common ambient temperatures.

Because the dynamics of the cycle are dominated by those
of the heat exchangers, the HEX models were constructed

from systems of DAEs, while algebraic models were con-
structed for the compressor and expansion valve. A series
of simplifying assumptions were used to facilitate the con-
struction of the HEX models, including one-dimensional pipe
flow, thermodynamic equilibrium in each discrete volume
of the refrigerant pipe at each instant in time, negligible
gravitational forces, and equality of the liquid and vapor
phase velocities in the two-phase region. The HEX model
under these assumptions consists of an interconnected set
of models that describe the refrigerant flow, the thermal
behavior of the tube wall, and the flow of air across the
heat exchanger, forming an index-1 system of DAEs. The
refrigerant pipe model uses a spline-based representation
of the thermodynamic refrigerant properties and enforces
the conservation of mass, momentum, and energy for the
refrigerant pipe, e.g,

∂(ρA)

∂t
+
∂(ρAv)

∂x
= 0 (1)

∂(ρvA)

∂t
+
∂(ρv2A)

∂x
= −A∂P

∂x
− Ff (2)

∂(ρuA)

∂t
+
∂(ρvhA)

∂x
= vA

∂P

∂x
+ vFf +

∂Q

∂x
, (3)

where ρ is the density, A is the cross-sectional area of the
flow, v is the velocity, P is the pressure, Ff is the frictional
pressure drop, u is the specific internal energy, h is the
specific enthalpy, and Q is the heat flow rate into or out of
the fluid. These equations can be adapted to a finite control
volume discretization of the refrigerant pipe via the Reynolds
transport theorem by using a staggered-grid approach. An
ordinary differential equation (ODE) model was constructed
for the refrigerant pipe wall with one heat storage element,
and an algebraic model of the airflow was used due to the
negligible energy storage of the air. Further information on
the structure of the HEX models, as well as the compressor
and expansion valve models, is available in [6].

This model was implemented in Julia using Modeling-
Toolkit.jl [7], a package built on a symbolic computational
algebra framework that enables the construction of large
acausal system models from smaller component models via
composition and inheritance. ModelingToolkit.jl provides a
representation that allows the models to be defined in a
declarative context and then transformed to generate imper-
ative Julia code that can be used with other packages, such
as differential equation solvers and automatic differentation
tools.

A relatively small model of the vapor compression cycle
was built for this study to facilitate rapid simulation and
development. The heat exchanger models were discretized
into 4 volumes each, with steady-state momentum balances
and dynamic mass and energy balances in each volume. The
resulting set of DAEs consists of 278 equations, which was
reduced to 24 nonlinear ODEs after index reduction via the
Pantelides algorithm [8] to produce the form

ẋ(t) = f(x(t),u(t)), (4)

where x ∈ Rnx is the state vector of the reduced model and



u ∈ Rnu is the vector of known control inputs (compres-
sor speed, valve position) and/or known system parameters
(ambient temperature, refrigerant properties, etc.) The state
vector x after index reduction is an augmented vector of
pressures (Pi), specific enthalpies (hi), and temperatures
(θi) of all finite volumes indexed by the subscript i. The
finite volumes are numbered 1 through 8 in the direction of
refrigerant flow as shown in Fig. 1, with the condensing HEX
consisting of volumes 1 through 4, where the inlet volume
is the first, and the evaporating HEX consisting of volumes
5 through 8, where the outlet volume is the last. Therefore,
the state vector x ∈ R24 is defined as

x :=
[
P1 h1 θ1 P2 h2 θ2 · · · P8 h8 θ8

]T
.

A temporally discretized model is obtained from (4) by

xk+1 = xk +

∫ tk+1

tk

f(x(t),u(t))dt =: fk(xk), (5)

where xk := x(tk), and u(t) has been conveniently absorbed
in the definition of fk(·). The integral in (5) is calcu-
lated numerically because of the high-dimensional complex
nonlinear nature of the model. This system is numerically
quite stiff, as the condition number of the Jacobian of the
continuous time model when the system is at steady-state is
approximately 7.423×104. Numerical solvers that can handle
stiff problems were thus required, and the solver QNDF [9]
was employed to propagate this model forward in time.

To account for the modeling errors and disturbances, the
model (5) is updated to add a disturbance term, i.e.

xk+1 = fk(xk) +wk, wk ∼ N (0,Qk), (6)

where wk denotes a zero-mean white Gaussian process with
covariance Qk.

In practice, cost and reliability considerations limit the
available sensors in common vapor compression equipment
to measurements of pressure and temperature at a small num-
ber of locations in the cycle. For the purpose of this work,
we assume that the available sensors measure temperature at
four locations (θ2, θ4, θ6, θ8), and pressure at two locations
(P1, P8). The measurement model is thus given by

yk = Hkxk + ηk, ηk ∼ N (0,Rk), (7)

where yk := y(tk),

y :=
[
P1 θ2 θ4 θ6 P8 θ8

]T
, (8)

Hk ∈ R6×24 is an appropriately defined binary measurement
matrix, and ηk is a zero-mean white Gaussian process with
covariance Rk. Note that the measurement model (7) is
linear, and the measurement matrix Hk does not change
with time step k. However, the subscript k is maintained
for possible generalization to a time-varying measurement
model.

III. CONSTRAINED SMOOTHING

As many performance monitoring and analysis appli-
cations are designed to operate on existing datasets, this
fixed-window aspect of these applications enables the use
of smoothers from Kalman state estimation frameworks,
which assimilate sensor measurements obtained within a time
interval to estimate states everywhere within that interval and
avoid the requirements and limitations of filters. Extended
Kalman estimation methods, e.g. EKF, are widely used to
estimate the states of nonlinear models through the use of
linearization to obtain the Jacobian for covariance propaga-
tion, and are well-suited for systems of small to moderate
sizes. Because the computation of the Jacobian and storage
of the covariance matrices can become prohibitive for large-
scale systems, ensemble estimation methods (e.g. EnKF)
were developed to perform Monte-Carlo simulations of the
nonlinear model directly, therefore bypassing the need for
linearization or storage of the explicit covariance matrix.

We present smoothing methods formulated in both ex-
tended and ensemble Kalman frameworks that incorporate
the linear inequality state constraints dictated by the physics
of the model, which are fundamental to the physical system
and often essential to the correct execution of the nonlinear
model. We refer to these smoothers as the Constrained
Extended Kalman Smoother (C-EKS) and the Constrained
Ensemble Kalman Smoother (C-EnKS); they resemble their
filtering counterparts, and we refer to the well-known for-
mulations for the EKF and EnKF in the literature [10].
The smoothing methods that satisfy linear constraints are
presented as Algorithms 1 and 2 in the following text.

A. State constraints

Physics-based models of multiphysical systems are de-
signed to enforce constraints between states to satisfy fun-
damental physical behavior. For example, a given direction
of fluid flow imposes a pressure gradient which must be en-
forced by the model, and any estimated states for the model
must satisfy this constraint to be valid. Another example of
a physics-based constraint is represented by the convective
transport of chemical species in a bulk flow, wherein the
mass flow rate of the species must be nonnegative.

In general, simulation models (6) of the cycle will satisfy
such physical constraints, since the model is based on funda-
mental physical principles. However, the state estimates ob-
tained from a standard filtering method may not necessarily
satisfy these constraints. These constraints must therefore be
explicitly incorporated into the estimation process to ensure
that the estimated states or parameters do not violate phys-
ical laws, and because the computational models are often
designed under the assumption that these state constraints
are satisfied; constraint violations often represent regions in
which the model is invalid, and can result in failures of the
model integration process.

The present study is focused on enforcing pressure con-
straints, though other constraints may also be imposed. We
thus constrain the pressure to decrease in the direction of



refrigerant flow. In terms of the state variables Pi, we require

P1 ≥ P2 ≥ · · · ≥ P7 ≥ P8, (9)

which can be rewritten to represent 7 linear constraints, i.e.,

P2 − P1 ≤ 0, P3 − P2 ≤ 0, · · · , P8 − P7 ≤ 0. (10)

The pressure constraints (10) at a time instant tk can there-
fore be written in the compact form

Axk ≤ 0, (11)

where A ∈ R7×24 is an appropriately defined sparse matrix
with non-zero elements ±1, and the inequality is interpreted
element-wise. The constraint (11) must be satisfied at all time
steps k = 1, 2, · · · , N .

B. Constrained extended Kalman smoother (C-EKS)

The C-EKS method which enforces state constraints in
the form given by (11) is provided in Algorithm 1, in which
Equations (12) and (13) constitute the forward filtering pass
and the backward smoothing pass of the C-EKS, respectively.
An initial estimate of the state at k = 1 is assumed to be
Gaussian with mean x̂−1 and covariance P−1 . Note that the
covariance matrix is denoted by boldface P , whereas the
scalar pressure variable is denoted by P in the preceding
sections.

Algorithm 1 C-EKS
Data: yk, k = 1, 2, · · · , N
Initialize: x̂−1 , P−1
for k = 1, 2, · · · , N do

Kk = (P−kH
T
k )(HkP

−
kH

T
k +Rk)−1 (12a)

P+
k = (I −KkHk)P−k (12b)

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k ) (12c)

x̂+
k ,P

+
k ← constrEK(x̂+

k ,P
+
k ) (12d)

P−k+1 = F kP
+
k F

T
k +Qk (12e)

x̂−k+1 = fk(x̂+
k ) (12f)

end for
PN ← P+

N , x̂k ← x̂+
k

for k = N,N − 1, · · · , 1 do

Sk = P+
k F

T
k

(
P−k+1

)−1
(13a)

P k = P+
k − Sk

(
P−k+1 − P k+1

)
STk (13b)

x̂k = x̂+
k + Sk

(
x̂k+1 − x̂−k+1

)
(13c)

x̂k,P k ← constrEK(x̂kP k) (13d)

end for

The first part of the C-EKS algorithm, i.e., subequations
in (12) except (12d), is the standard EKF. This filter has been
modified to enforce state constraints such as (9). The function
constrEK in (12d), which will be discussed in turn, returns
the updated posterior mean and covariance that satisfy the
state constraints if the the posterior estimates obtained from
(12b) and (12c) are not consistent with the physical laws.

In equation (12), x̂+
k denotes the estimated mean of the

state vector at time tk obtained after assimilating all sensor
measurements up to time step k, whereas x̂−k denotes the
predicted state estimate at time tk obtained after assimilating
all sensor measurements up to time step k − 1. F k denotes
the Jacobian of fk at x̂+

k , i.e.,

F k :=
∂fk(x)

∂x

∣∣∣∣
x=x̂+

k

. (14)

Computation of the Jacobian is computationally challenging
because fk involves a numerical integral that uses stiff
solvers. The solver QNDF is compatible with automatic
differentiation (AD) functionality in Julia which facilitates
the computation of Jacobian matrices.

The second part of the C-EKS algorithm, i.e., subequa-
tions in (13) except (13d), are the well-known Rauch-Tung-
Striebel (RTS) smoother [11] equations. This smoother has
also been modified to enforce state constraints in (13d). The
state moments estimated from the RTS smoother are denoted
by x̂k, P k (note that the superscript +/− is omitted for the
smoother). The smoothing is initialized at x̂N = x̂+

N and
PN = P+

N , and performed backward in time using (13).
As discussed in Section III-A, the estimated states must

satisfy the pressure constraint (11). The standard Kalman
update step (12c) essentially minimizes the cost function

x̂+
k = arg min

x
Jk(x),

Jk(x) :=
∥∥x− x̂−k ∥∥2(P−

k )−1 + ‖yk −Hkx‖2R−1
k
.

(15)

The Kalman update step with the state constraints can
therefore be implemented by solving the problem

x̂+
k = arg min

x
Jk(x) subject to Ax ≤ 0.

While the solution of the above optimization problem yields
a constrained update for the mean, the constraint information
is not enforced on the error covariance matrix. Nevertheless,
it is expected that the uncertainty in the state estimate
would decrease since the system state must satisfy known
constraints.

Probability density function (PDF) truncation meth-
ods [12] are well-suited for this problem, and are incorpo-
rated into C-EKS by first performing the standard extended
Kalman update (12c) or (13c) to obtain standard mean and
covariance. If the mean violates the constraint, then PDF
truncation is performed, after which both the mean and
covariance are corrected to satisfy the constraints. As a result,
the magnitude of the corrected covariance is reduced, which
indicates increased confidence in the state estimate.

The PDF truncation approach discussed in [12] was
adopted in the C-EKS. The PDF truncation method se-
quentially enforces one scalar constraint at a time after an
appropriate coordinate transformation. The scalar Gaussian
PDF is truncated at the boundaries of the linear constraint by
setting the density outside the feasible region to zero. This
truncated PDF is then normalized to have the total probability
of one within the feasible bounds, and the constrained mean



and covariance are then calculated from the normalized
truncated PDF. While the equations for this method can be
found in [12], the function constrEK essentially returns x
and P if the constraint is satisfied, and truncates the PDFs
and returns the constrained version of x and P if not.

One implementation aspect which merits consideration is
that extended Kalman methods require the computation of
Jacobians e.g. F k at each time step. Although the AD tools
in Julia facilitate this computation, the required time and
memory can be prohibitive for systems of higher dimension.
We therefore explore constrained ensemble-based smoothing
methods, which avoid these computations.

C. Constrained ensemble Kalman smoother (C-EnKS)

The notation for the ensemble Kalman framework is as
follows. Let M denote the number of samples in the ensem-
ble, i.e., ensemble size. Let x(i)+

k denote the i-th member
of the posterior ensemble (indicated by the superscript i in
parentheses) at time instant tk obtained after assimilating
sensor measurements up to time step k. Similarly, x(i)−

k

denote the i-th member of the prior ensemble at time instant
tk obtained after assimilating sensor measurements up to
time step k−1. A matrix of all ensemble members is denoted
by

X+
k :=

[
x
(1)+
k x

(2)+
k · · · x(M)+

k

]
∈ Rnx×M

whose i-th column is the i-th ensemble member. The matrix
of prior ensemble X−k is also defined similarly. The covari-
ance matrix P−k calculated from the prior ensemble matrix
is given by

P−k =
1

M − 1
X̃
−
k

(
X̃
−
k

)T
(16)

where X̃
−
k denotes the matrix of anomalies, i.e. the matrix

of ensemble members’ deviations from the ensemble mean
x̂−k , given by

X̃
−
k =

[
x
(1)−
k − x̂−k · · · x

(M)−
k − x̂−k

]
= X−k

(
I − 1M1TM

M

)
, (17)

and 1M ∈ RM denotes a column vector of ones.
Let us further denote by x(i)+

m:k the augmented vector of
posterior states from time steps m to k (1 ≤ m ≤ k), of the
i-th sample trajectory, and by X+

m:k the augmented posterior
ensemble matrix, i.e.,

x
(i)+
m:k =


x
(i)+
m

x
(i)+
m+1
...

x
(i)+
k

 , X+
m:k :=


X+
m

X+
m+1
...
X+
k

 . (18)

The prior augmented state vector of the i-th sample trajectory
and the prior augmented ensemble matrix, i.e. x(i)−

m:k and
X−m:k are defined analogously. The ensemble covariance
matrix P−m:k of the augmented prior ensemble X−m:k is
calculated similar to (16).

Algorithm 2 C-EnKS
Data: yk, k = 1, 2, · · · , N
Initialize: x̂−1 ,P

−
1 , x(i)−

1 ∼ N (x̂−1 ,P
−
1 ), i = 1, 2 · · ·M

for k = 1, 2, · · · , N do

X̃
−
m:k = X−m:k

(
I − 1M1TM

M

)
, (19a)

P−m:k = X̃
−
m:k

(
X̃
−
m:k

)T
/(M − 1) (19b)

∀i ∈{1, 2 · · ·M} :

x
(i)+
m:k = x

(i)−
m:k − P

−
m:kH

T
m:k(Hm:kP

−
m:kH

T
m:k +Rk)−1

× (Hm:kx
(i)−
m:k − yk − η

(i)
k ) (19c)

x
(i)+
m:k ← constrEnK

(
x
(i)+
m:k , X

−
m:k, η

(i)
k

)
(19d)

x
(i)−
k+1 = fk(x

(i)+
k ) +w

(i)
k (19e)

where η(i)
k ∼ N (0,Rk) and w(i)

k ∼ N (0,Qk).

end for

This notation enables us to present the constrained en-
semble Kalman smoother (C-EnKS) in Algorithm 2, where
the matrix Hm:k := [0 0 · · · Hk] denotes the augmented
measurement matrix of appropriate size. When (19d) is
omitted, this reduces to the well-known ensemble Kalman
smoother (EnKS) [13]. If m is equal to 1, the complete
history of the ensemble from the very first time step is
updated at each time step k. Because the increase in the size
of augmented variables in (18) at each time step makes the
problem computationally prohibitive, we implement a fixed-
lag smoother in which m is selected at each time step k
such that k−m is constant (after sufficient time has passed).
This updates the state estimates up to only a certain number
of time steps in the past at the current time step k. An
alternative selection of m = k recovers the standard EnKF,
which updates the state estimates only at the current time
step k at which a measurement is obtained.

The EnKF update step can be viewed in much the same
way as the EKF update step in (15). The EnKF update step
(19c) corresponding to m = k thus minimizes the cost

x
(i)+
k = arg min

x
J
(i)
k (x),

J
(i)
k (x) :=

∥∥∥x− x(i)−
k

∥∥∥2
(P−

k )−1

+
∥∥∥yk + η

(i)
k −Hk(x)

∥∥∥2
(Rk)−1

,

(20)

and subscript k : k of the augmented variables is replaced
with k for the EnKF. The constrained posterior sample is
therefore determined by solving the optimization problem in
the EnKF [14]

x
(i)+
k = arg min

x
J
(i)
k (x) subject to Ax ≤ 0. (21)

We now generalize (20) and (21) for the EnKS, i.e. m <
k. The EnKS update step (19c) corresponding to m < k



minimizes the cost function

x
(i)+
m:k = arg min

xm:k

J
(i)
m:k(xm:k)

J
(i)
m:k(xm:k) :=

∥∥∥xm:k − x(i)−
m:k

∥∥∥2
(P−

m:k)
−1

+
∥∥∥yk + η

(i)
k −Hm:kxm:k

∥∥∥2
R−1

k

.

(22)

The constrained EnKS update can be performed by solving
(22) subject to state inequality constraints. As the smoother
updates the history of states (augmented state vector) from
time step m to k, the updated state vector must satisfy
the state constraints at each time step over this smoothing
window. Consequently, (22) becomes

x
(i)+
m:k = arg min

xm:k

J
(i)
m:k(xm:k)

subject to Axq ≤ 0, q = m,m+ 1, · · · , k,

where xm:k = [xTm,x
T
m+1, · · · ,xTk ]T . For a compact rep-

resentation, let us define Am:k = I ⊗A, where ⊗ denotes
the Kronecker product. The optimization problem for con-
strained smoother update can thus be written as

x
(i)+
m:k = arg min

xm:k

J
(i)
m:k(xm:k)

subject to Am:kxm:k ≤ 0.
(23)

The prohibitive size and computational cost of the opti-
mization problem (23) for systems with hundreds of states
and moderately long smoothing windows (k−m) motivates
the reformulation of this constrained smoother problem in
the covariance range. Previous work [14] developed this
formulation strictly for the case of the EnKF, which we
extend in an analogous formulation for the EnKS.

Let us denote the optimal correction to an augmented
sample by v(i)∗m:k, which is defined as v(i)∗m:k := x

(i)+
m:k −x

(i)−
m:k .

The correction v(i)∗m:k lies in the range of covariance matrix
P−m:k, i.e., v(i)∗m:k ∈ R

(
P−m:k

)
, as seen from (19c). We

thus rewrite the optimization problem (22) using the variable
substitution vm:k = xm:k − x(i)−

m:k ,

v
(i)∗
m:k = arg min

vm:k∈R(P−
m:k)

J
(i)

m:k(vm:k)

J
(i)

m:k(vm:k) := ‖vm:k‖2(P−
m:k)

−1 +
∥∥∥ỹ(i)

k −Hm:kvm:k

∥∥∥2
R−1

k

where ỹ(i)
k := yk + η

(i)
k −Hm:kx

(i)−
m:k has been defined for

notational simplicity. The constrained problem (23) therefore
becomes

v
(i)∗
m:k = arg min

vm:k∈R(P−
m:k)

J
(i)

m:k(vm:k)

subject to Am:kvm:k +Am:kx
(i)−
m:k ≤ 0.

(24)

Since vm:k ∈ R
(
P−m:k

)
, let us substitute vm:k =

P−m:kzm:k where zm:k is a new variable of appropriate
dimension. Using the definition of P−m:k (see (16)), the first

term in the cost function of (24) becomes

‖vm:k‖2(P−
m:k)

−1 = vTm:k(P−m:k)−1vm:k

= zTm:kP
−
m:k(P−m:k)−1P−m:kzm:k

= zTm:kP
−
m:kzm:k

=
1

M − 1
zTm:kX̃

−
m:k

(
X̃
−
m:k

)T
zm:k

=
1

M − 1
rTr =

1

M − 1
‖r‖2

where
(
X̃
−
1:k

)T
z1:k =: r ∈ RM . Using the variable sub-

stitution v1:k = P−1:kz1:k = 1
M−1X̃

−
1:k r, the optimization

problem (24) is now written in terms of the new optimization
variable r ∈ RM

r(i)∗ = arg min
r∈RM

(
‖r‖2

M − 1

+

∥∥∥∥ỹ(i)
k −

1

M − 1
Hm:kX̃

−
m:k r

∥∥∥∥2
R−1

k

)
subject to

1

M − 1
Am:kX̃

−
m:k r +Am:kx

(i)−
m:k ≤ 0.

This optimization problem can be further simplified to

r(i)∗ = arg min
r∈RM

rTB2r − 2bTr

subject to Am:k

(
B1r + x

(i)−
m:k

)
≤ 0,

(25)

where

B2 =
1

M − 1
I +

1

(M − 1)2

(
Hm:kX̃

−
m:k

)T
R−1Hm:kX̃

−
m:k,

bT =
2

M − 1

[(
ỹ
(i)
k

)T
R−1Hm:kX̃

−
m:k

]
,

B1 =
1

M − 1
X̃
−
m:k

Problem (25) is a quadratic program with linear inequality
constraints which can be solved using standard software
packages. The advantage of this formulation is that r ∈ RM
is the optimization variable in (25), so that the size of
the quadratic program to be solved is constrained by the
ensemble size M . In comparison to the limited size of r,
the size of the quadratic program to be solved in (23) can
be arbitrarily large, depending on the length of smoothing
window for the optimization variable xm:k.

Once the optimal r(i)∗ is determined, the updated i-th
sample is given by the inverse variable transformation, i.e.

x
(i)+
1:k = x

(i)−
1:k +B1 r

(i)∗.

This can be incorporated into pseudo code for the function
constrEnK in (19d) as given below.

function constrEnK
(
x
(i)+
m:k , X

−
m:k, η

(i)
k

)
if Am:kx

(i)+
m:k ≤ 0 then

return x(i)+
m:k

else
determine r(i)∗ by solving (25)



return
(
x
(i)−
1:k +B1 r

(i)∗
)

end if
end function

IV. NUMERICAL RESULTS

For the purpose of numerical simulations, the model is
discretized with the time step of 0.1 s, i.e., ∆t := tk+1−tk =
0.1 s. The process noise covariance matrix Qk ∈ R24×24

is assumed to be a diagonal matrix such that its principal
diagonal is the vector 18 ⊗ [7 × 105, 6 × 104, 2 × 10−3]T .
The numerical values of the process covariance are primarily
dictated by the stiffness of the cycle model. Higher variance
process noise was found to make the system unstable leading
to failure of the numerical integration in (5). However,
these covariance values are sufficiently large to generally
characterize the potential uncertainty arising due to external
noises as well as the uncertain cycle parameters. Noise
variance of the temperature sensors (σ2

θ ) and pressure sensors
(σ2
P ) are assumed to be σ2

θ = 1 K2 and σ2
P = 5× 104 Pa2,

based on the characteristics of available hardware. All sensor
channels are assumed to be independent of each other such
that the sensor noise covariance matrix Rk is diagonal with
non-zero elements σ2

θ and σ2
P .

The model is simulated for 500 time steps (i.e., 50 s).
Compressor speed is assumed to be a piecewise constant
function with a single jump at t = 10 s from 50 Hz to
55 Hz, while the expansion valve position remains constant
except for a jump at t = 30 s from 56.4% to 62.4%. A
similar change in the outdoor ambient temperature was also
incorporated by changing from 305.15 K to 308.15 K at t =
15 s. An ensemble of 50 trajectories was used for ensemble
Kalman based methods with covariance inflation of 1%.

Fig. 2 illustrates some of the estimated state trajectories
from the C-EKS and C-EnKS methods that were not mea-
sured directly by the sensors, where the reference trajec-
tory for each given variable is denoted by a black solid
line. The estimated state trajectories (both C-EKS and C-
EnKS) match the actual trajectories well, and significant
deviation of the estimated trajectories from the reference
trajectories occurs only during the initial time interval, as
the uncertainty associated with the initial condition of the
cycle is large. The standard deviations of the initial state
variables are assumed to be 10% of their values for pressure
and specific enthalpy, and 1% for temperature. In general,
deviations of the estimated trajectories from the reference
trajectory quickly reduce as additional sensor measurements
are assimilated. Similar trends were observed for other state
variables not shown here.

For all the states, the percentage estimation error is calcu-
lated pointwise, i.e. percentage estimation error is calculated
for every state at each time step. The mean pointwise
percentage error was 0.16% for C-EKS and 0.22% for C-
EnKS, while the standard deviation of this error was 0.42%
for C-EKS and 0.54% for C-EnKS. The maximum pointwise
percentage error was found to be 17.62% for C-EKS and
12.33% for C-EnKS. The relatively large error of the C-
EnKS can mainly be attributed to a small ensemble size.

Fig. 2. Estimated states pressure P4 and specific enthalpy h5 which are
not directly measured.

Fig. 3. Normalized RMSE and trace of error covariance matrix obtained
using C-EnKS with different sensor sets. Normalization constants for
pressure, specific enthalpy, and temperature are 106 Pa, 105 J/kg, and 100
K respectively.

One particular topic of study was the effect of the number
of pressure sensors on state estimates, as these sensors are
typically one to two orders of magnitude more expensive
than temperature sensors. C-EnKS was thus employed as a
representative for state estimation with three different sensor
sets. The initial sensor set described in (8) is denoted by
‘2P’, indicating that there are two pressure sensors. Sensor
set ’1P’ was obtained after eliminating P1 measurement from
(8), while the sensor set ’0P’ did not include any sensors.

After performing this comparison, the mean pointwise
percentage error was 0.22% for the 2P set, 0.30% for the 1P
set, and 0.32% for the 0P set, while the standard deviation
of this error was 0.54% for the 2P set, 0.62% for the 1P
set, and 0.96% for the 0P set. Similarly, the maximum
pointwise percentage error was found to be 12.33% for the



2P set, 15.39% for the 1P set, and 28.62% for the 0P set.
As expected, the estimation error increases as the number
of pressure sensors in the system decreases, though the
estimation accuracy of 2P and 1P are largely comparable. It
is interesting to note that the complete elimination of pressure
measurements significantly increases the estimation errors, as
seen from error statistics corresponding to 0P. We therefore
conclude that at least one pressure sensor measurement is
recommended for good estimation accuracy. Fig. 3 shows the
trace of error covariance matrix and RMSE (both normalized)
corresponding to these different sensor sets. Significantly
larger estimation errors corresponding to 0P sensor set are
mainly attributed to initial time interval of the trajectory.
With time, the estimation errors for all sensor sets become
comparable. The estimation accuracy also appears to be
affected by the specific location of the pressure sensor; when
there is only one pressure sensor that measures P1 instead
of P8, the estimation error is slightly larger (mean 0.26%,
standard deviation 0.81%, maximum 23.55%) than the 1P set
shown in Fig. 3. Therefore, it is favorable to place a pressure
sensor in the evaporator, rather than the condenser.

We also evaluated the effect and importance of incorpo-
rating constraints like (11) in the estimation process in com-
parison to methods without such a mechanism. Algorithms
1 and 2 were therefore implemented without enforcing the
state constraints (i.e. by omitting (12d), (13d), (19d)), and are
referred to as EKS and EnKS respectively. We observed that
the EKS may produce physically inconsistent state estimates
at initial few time steps, but that the state estimates obtained
using EKS at later time instants satisfy the state constraints.
The percentage estimation error of EKS (with mean 0.16%,
standard deviation 0.37%, and maximum 17.54%) and trace
of covariance matrix (on an average 1.04 times C-EKS) was
found to be quite similar to the C-EKS.

A similar comparison of C-EnKS and EnKS showed that
their estimation accuracy is comparable (with mean 0.21%,
standard deviation 0.51%, and maximum 12.04%), though
C-EnKS has a slightly smaller error covariance during the
initial part of the trajectory. This is evident in Fig. 4,
which illustrates the smaller uncertainty in the state estimate.
During the initial time period, almost all sample trajectories
as produced by EnKS were found to violate the state con-
straints. The number of sample trajectories that violate the
state constraints kept decreasing with time, with only few
violating the constraints at later time instants. Nevertheless,
these constraint enforcement mechanisms were important for
the successful forward solution of the problem, as constraint
violations could break the model assumptions and prevent
the estimator from functioning for a meaningful duration.

V. CONCLUSIONS & DISCUSSION

In this work, we developed and demonstrated the ef-
fectiveness of a framework for state estimation in vapor
compression cycles, with a particular focus on ensemble
and extended Kalman smoothing algorithms (C-EKS and C-
EnKS) that incorporate physical constraints on the system
states. Constraint satisfaction is important for these models to

Fig. 4. Normalized trace of error covariance matrix obtained using C-EnKS
and EnKS.

ensure that their assumptions are satisfied and that the model
functions correctly. Numerical results show that classical
Kalman-based approaches for state estimation work well
on cycle models if paired with appropriate modeling and
computational tools. Next steps for this work include the
extension of these methods to models with higher fidelity,
such as the use of moist air heat exchanger models, and
the further development of iterative or particle filtering
approaches for these problems.
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