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Multi-stage Perception-aware Chance-constrained MPC
with Applications to Automated Driving

Angelo D. Bonzanini, Ali Mesbah, and Stefano Di Cairano

Abstract— Perception-aware Chance-constrained Model Pre-
dictive Control (PAC-MPC) accounts for the interdependence
between perception and control for systems operating in uncer-
tain environments. The environment is discovered by percep-
tion, which imposes chance constraints on system operation.
PAC-MPC can handle a perception quality that depends on
the system states and/or inputs, thus affecting uncertainty
quantification in the chance constraints. In this paper, we extend
PAC-MPC by introducing a scenario-based prediction for future
measurements, so that the resulting multi-stage PAC-MPC
does not require a conservative estimate of the measurement
prediction error covariance. We demonstrate PAC-MPC for
automated vehicle control when obstacles and road boundaries
are uncertain and perceived by variable precision sensors
subject to an overall sensing budget and when the scenarios
are generated based on possible obstacle behaviors.

I. INTRODUCTION

A major challenge in automated vehicle operation [1]
is to make safe and effective decisions in environments
that are not perfectly known and are rapidly changing.
Typically, information about the environment is acquired
by perception algorithms operating on data from multiple
sensors [2], [3]. Thus far, the proposed control architectures
execute perception and control sequentially, i.e., they first
perceive the environment and then decide the actions that
the vehicle will take. However, this ignores the two-sided
coupling between perception and control.

The acquired knowledge of the environment (or the lack
thereof) influences the decision of a vehicle to operate in (or
avoid) specific areas. But at the same time, acquiring this
environment knowledge depends on how the vehicle moves
(e.g., due to the field of view or focus of sensors) and on
how the sensor and the sensor processing are controlled.
As such, there exists an interdependence between perception
and control: the perception of the environment depends on
how the vehicle is controlled, and the control of the vehicle
depends on the environment information acquired.

Yet, the two-way interaction between perception and con-
trol remains under-explored. In our recent works [4], [5],
we proposed and analyzed the properties of a MPC design
that addresses the interaction of perception of an uncertain
environment and control of a known system, which are cou-
pled through constraints. Due to the stochastic nature of the
environment, the state constraints are formulated as chance
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constraints [6]–[8]. Our MPC approach propagates the first
and second moments of the environment state distribution
by taking into account the future effects of the environment
estimator, which, in turn, depends on the control decisions.
Due to accounting for the interaction between perception and
control, we named the approach Perception Aware Chance-
constrained MPC (PAC-MPC).

In this paper, we further extend the PAC-MPC framework
with a scenario-based prediction to consider multiple realiza-
tions of the future measurements of the environment state.
This scenario-based approach enables closed-loop prediction
of the different environment measurements, as different con-
trol inputs would be available for the different scenarios.
Thus, the proposed approach avoids a conservative robusti-
fication that would account for the measurement prediction
error. We demonstrate the multi-stage PAC-MPC (msPAC-
MPC) for automated vehicle control, where the scenario
approach is particularly useful for predicting different (dis-
crete) future behaviors of other vehicles, e.g., keeping lane,
changing lane, or staying out of the road.

The paper is organized as follows. Section II presents
the problem setting, followed by the scenario-based formu-
lation for PAC-MPC in Section III. Section IV discusses
the implementation of the msPAC-MPC on an automated
vehicle case study. In Section V, we show various simulation
scenarios where the lanes and other vehicles are uncertain
and determined through perception, comparing msPAC-MPC
and PAC-MPC. Finally, Section VI concludes the paper.

Notation: R, R0+, R+, Z, Z0+, and Z+ are the sets
of real, nonnegative real, positive real, integer, nonnegative
integer, and positive integer numbers, respectively. Intervals
are denoted by Z[a,b) = {z ∈ Z : a ≤ z < b}. For a vector
x, the i-th component is denoted by [x]i. ‖ · ‖ is the 2-norm,
and for a positive (semi) definite matrix, Q > 0, (Q ≥ 0),
‖x‖2Q = x>Qx. X = diag[x] is a diagonal matrix such that
[X]ii = xi. P[A] is the probability of event A. A normally
distributed random vector x with mean µx and covariance
Σx is denoted by x ∼ N (µx,Σx).

II. PRELIMINARIES ON PAC-MPC
In this section, we describe the individual components of

the PAC-MPC and formulate the optimal control problem.

A. Vehicle Motion and Uncertain Environment Models
The vehicle motion model is described by the known

discrete-time nonlinear dynamics

xsk+1 = fs(xsk, u
s
k), (1a)

ysk = qs(xsk, u
s
k), (1b)



where xs ∈ Rnx is the state vector, us ∈ Rnu is the input
vector, and ys ∈ Rny is the performance output vector.
Model (1) is subject to state and input constraints

xs ∈ X , us ∈ U , (2)

where X and U are the state and input constraint sets,
respectively. Although (1) is considered to be known, model
uncertainty can be accounted for using standard methods [9].
The vehicle modeled by (1) operates in an uncertain envi-
ronment, which is modeled by a vector of random variables
xe ∈ Rmx , e.g., the road boundaries/features and obstacle
positions. The environment dynamics and measurements are
modeled as

xek+1 = fe(xek, ψk), (3a)
yek = qe(xek, ζk, x

s
k, u

s
k), (3b)

where ye ∈ Rmy is the vector of environment measurements,
and ψ, ζ are random process and measurement noise, respec-
tively. While (3a) does not depend on (1), the environment
measurements (3b) depend on the system states and inputs.
This allows accounting for the dependence of sensing on
states as well as on control actions.

B. Estimator and Uncertainty Propagation

The propagation of the first and second moments of the
environment state xe is based on a model of the environment
in closed-loop with the perception algorithm

µek+1 = gµ (µek, y
e
k, x

s
k, u

s
k) , (4a)

Σek+1 = gΣ (Σek, x
s
k, u

s
k) , (4b)

where µe and Σe are the mean and covariance estimates
of xe, which depend on the states and inputs of (1) due to
ye. Since ye is not known in advance, for prediction, we
propagate the mean and covariance of xe by a model of (4)

µ̂ek+1 = ĝµ (µ̂ek, ŷ
e
k, x

s
k, u

s
k) , (5a)

Σ̂ek+1 = ĝΣ

(
Σ̂ek,Σ

ε
k, x

s
k, u

s
k

)
, (5b)

where ŷe is the predicted measurement, µ̂e, Σ̂e are the
predicted mean and covariance of xe, and Σε is the
covariance of the measurement prediction error εy =
qe(fe(µek−1, µ

ψ), µζ , xsk, u
s
k)− yek [5].

C. Constraints, Objective and Cost Function

Due to stochastic uncertainty in the model of the environ-
ment, we impose linear individual chance constraints (ICCs)
between vehicle and environment,

P
[
hsl x

s + hel x
e ≤ hbl

]
≥ 1− εl, l ∈ Z[1,nc,], (6)

where εl is the maximum allowed probability of constraint
violation for the lth constraint.

Our objective is to control the vehicle motion based on (1)
such that ys tracks a reference rs ∈ Rny while satisfying
(2) and (6). Since (4) and (5) depend on the system states
and inputs, the PAC-MPC strikes a balance between tracking
and improving perception. Enhanced perception will reduce

uncertainty and hence can improve tracking in the future.
To this end, we proposed a cost function that stabilizes the
system state xs and the environment covariance Σe [5]

VN (xsk, Uk,Σ
e
k, r

s
k) = F (xsN |k,Σ

e
N |k, r

s
k) +

N−1∑
j=0

`(Σej|k, r
s
k)

= Fc(x
s
N |k, r

s
k) + Fp(Σ

e
N |k, r

s
k)+

N−1∑
j=0

(
`c(x

s
j|k, u

s
j|k, r

s
k) + `p(x

s
j|k, u

s
j|k,Σ

e
j|k, r

s
k)
)
,

(7)

where N ∈ Z+ is the prediction horizon; `c(x, u, r) and
Fc(x, r) are the control stage and terminal costs, respec-
tively; `p(x, u,Σ, r) and Fp(x,Σ, r) are the perception stage
and terminal costs, respectively; and Uk = (us0|k, . . . , u

s
N |k).

III. MULTI-STAGE PAC-MPC

Even though in Section II the covariance propagation (4b)
is fully defined by the system states and inputs, the estimator
mean (4a) depends on the environment measurement ye,
which is an exogenous signal. In our previous works [4], [5],
we used a prediction ŷe, while increasing the uncertainty by
Σε in (5b), to compensate for the prediction error. This may
result in conservative performance if Σε is over-estimated.
Here, we propose a multi-stage approach [10], which predicts
the environment measurements ye using a tree of discrete
scenarios. In each branch, we predict a different environment
measurement realization, as shown in Fig. 1. Each path from
the root node xs0 to a leaf node is a scenario denoted by the
(additional) superscript i = {1, 2, . . . , Ns}.

The multi-stage formulation allows for closed-loop pre-
diction, i.e., it accounts for the fact that new informa-
tion will become available in the future to determine the
control actions. This, in turn, reduces the conservativeness
compared to assuming a worst-case uncertainty realization
[10]. The tree structure of the scenarios stems from the
non-anticipativity constraints, which impose that all control
inputs stemming from the same root node must be equal
since realizations of the uncertainty cannot be anticipated,
see Fig. 1. Since the scenario-tree grows exponentially with
the prediction horizon, we branch the tree up to a certain
stage NB , the branching horizon. For time-steps past NB ,
the uncertainty is assumed to be fixed at the nominal value
for the corresponding scenario.

In msPAC-MPC, the cost function (7) is modified to
minimize the expectation over the scenarios

VN (xsk, Uk,Σ
e
k, r

s
k) = E

[
VN (xsk, U

i
k,Σ

e
k, r

s
k)
]

=
Ns∑
i=1

ωiVN (xsk, U
i
k,Σ

e
k, r

s
k), (8)

where U ik is the sequence of control inputs for scenario i
and ωi is the weight or probability of each scenario, which
is set to ωi = 1/ns in the absence of additional information.

Remark 1: In the case where the scenarios capture all the
possible environment measurement realizations, Σε in (5b)
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Fig. 1. Scenario tree where nodes are generated by different realizations
of the measurement yek . The dashed boxes represent the control inputs that
must be equal according to the non-anticipativity constraints.

will be set to zero because the scenarios condition the tra-
jectory on the realizations of the environment measurement
ye. Therefore, since ŷe = ye is “given”, there will be no
measurement prediction error. If the scenarios are obtained
by sampling a continuous distribution, Σε in (5b) may still be
included, but it will be smaller than the one in [4], [5] since
it only accounts for the discretization error, see, e.g., [11].

Given the current state xsk, the msPAC-MPC problem is
formulated as

V ∗N (xsk,Σ
e
k, r

s
k) = min

Uk

Ns∑
i=1

VN
(
xsk, U

i
k, Σ̂

e
k, r

s
k

)
(9a)

s.t. xs,ij+1|k = fs(xs,i
′

j|k , u
s,i′

j|k ) (9b)(
µ̂e,ij+1|k, Σ̂

e,i
j+1|k

)
= ĝ

(
µ̂e,i

′

j|k , Σ̂
e,i′

j|k , y
e,i′

j|k , x
s,i′

j|k , u
s,i′

j|k

)
(9c)

us,ij|k = us,lj|k if xs,i
′

j|k = xs,l
′

j|k (9d)(
xs,ij|k, u

s,i
j|k

)
∈ X × U (9e)

P
[
hsl x

s,i
j|k + hel x

e,i
j|k ≤ h

b
l

]
≥ 1− εl, l ∈ Z[1,nc] (9f)(

xs,iN |k, rN |k

)
∈ Zf (µ̂e,iN |k, Σ̂

e,i
N |k) (9g)

xs,10|k = xsk, , µe,10|k = µek, Σe,10|k = Σ̂e,10|k, (9h)

where Ns ∈ Z+ is the number of scenarios, i′ and l′

denote the parent node of scenarios i and l, respectively,
and Zf (µ̂e,iN |k, Σ̂

e,i
N |k) is the terminal set. The optimal so-

lution to (9) is denoted by U∗k = (U1,∗
k , . . . , UNs,∗

k ) =

(us,1,∗0|k , . . . , us,Ns,∗
N |k ). The first input us,1,∗0|k is applied to

the true system. Note that the non-anticipativity constraints
ensure that us,i,∗0|k is equal among all scenarios.

Remark 2: The scenarios may not model the environment
measurements, rather functions for predicting them {ŷe,ik =
φei (µ

e,i
k , xs,ik , us,ik , µψ, µζ)}i. Thus, measurements are pre-

dicted based on a set of possible environment evolutions,
such as different behaviors of other vehicles in automated
driving applications.

IV. PAC-MPC FOR VEHICLE CONTROL

In this section, we apply PAC-MPC for vehicle control.

A. Vehicle Model

To describe vehicle motion, we use the kinematic bicycle
model [12]

ṗx = v cos(ψ + β(δ)) (10a)
ṗy = v sin(ψ + β(δ)) (10b)
v̇ = a (10c)

ψ̇ = (v/lr) sin(β(δ)), (10d)

where px is the East (map-horizontal) position, py is the
North (map-vertical) position, v is the velocity, ψ is the
heading angle, and β(δ) is the body slip angle

β(δ) = arctan

(
tan(δ)

lr
lr + lf

)
, (11)

where lf , lr are the front and rear axle lengths. Vehicle
model (10) is subject to the constraints

0 ≤ v ≤ vmax, −ψmax ≤ ψ − ψrd ≤ ψmax, (12a)
amin ≤ a ≤ amax, −δmax ≤ δ ≤ δmax, (12b)

where ψrd is the road heading. In (10), the acceleration a and
the steering angle of the front wheel at the road δ are the
control inputs. We discretize (10) with sampling period Ts to
obtain fs in (1), where xs = [px py v ψ]> and us = [a δ]>.
Constraints (12) define the sets X and U in (2).

B. Environment Model

For the simplicity of notation, we consider a straight road
with three lanes and another vehicle, i.e., a moving obstacle.
The lateral position of left and right road boundaries bl, br

with respect to the centerline are modeled as constant

ḃl = 0, ḃr = 0. (13)

The obstacle is over-approximated by an ellipse, see Fig. 2,
and its nominal longitudinal motion is modeled as

ṗolon = vox. (14)

The nominal lateral motion is modeled as an integrator in
closed-loop with a tracking controller resulting in

ṗolat = −Kepolat + F ere, (15)

where Ke is a stabilizing gain determining the time to
complete a lane change and F e provides unitary gain.

We construct the environment prediction model by col-
lecting (13), (14), (15), formulated in discrete time with
sampling period Ts, and adding process noise ψ ∼ N (0,Σψ)
and measurement noise ζ ∼ N (0,Σζ) to model disturbances
and sensing uncertainty. This yields

xek+1 = Aexek +Gerek +Beψk, (16a)
yek = Cek(xsk, u

s
k)xek +De

k(xsk, u
s
k)ζk, (16b)

where xe = [polon p
o
lat b

l br]>. Cek = Cek(xsk, u
s
k) and De

k =
De
k(xsk, u

s
k) define the measurement model. Here,

Cek = I, De
k = De

0

(
I − diag

(
[ρ1σ1 ρ1σ1 ρ2σ2 ρ3σ3]

))
,

(17)



Fig. 2. Schematic of the case study, including the environment states [xe]i,
i = 1 . . . 4, the vehicle position p = ([xs]1, [xs]2), and the sensing inputs
[us]i, i = 3 . . . 5.

where σi ∈ [0, 1], i = 1, . . . , 3, are the sensing control
inputs that determine the quality of the measurements for
the obstacle (longitudinal and lateral) position, the left road
boundary, and the right road boundary, respectively. This
represents a sensor (e.g., camera) that can be “tasked”
to different directions and in different amounts. Increasing
σ1 will increase focus on the obstacle, thus reducing the
uncertainty on [xe]1 and [xe]2; σ2 will increase focus on
the left road edge, reducing the uncertainty on [xe]3, as σ3

does on [xe]4. Specifically, in (17), De
0 = 3, ρ1 = 0.8,

ρ2 = ρ3 = 0.95.
We augment the system inputs by incorporating the sens-

ing inputs such that us = [a δ σ1 σ2 σ3]>. The limited
sensing budget is enforced by the constraint

[usk]3 + [usk]4 + [usk]5 ≤ 2. (18)

C. Uncertainty Propagation and Scenarios

Based on (16), we model ĝ(·) in (9c) as

µ̂ek+1 = Λkµ̂
e
k +Beµψ − Lkŷek, (19a)

Σ̂ek+1 = ΛkΣ̂ekΛ>k +Qek +Rek, (19b)

where Lk = L(xsk, u
s
k) is the estimator gain, Λk =

Λ(xsk, u
s
k) = Ae + LkC

e
k , Qek = BeΣψBe>, and

R(xsk, u
s
k) = LkD

e
kΣζ(LkD

e
k)>. Although the covariance

of the environment states Σ̂e can be propagated determinis-
tically, the mean of the environment states µ̂e depends on the
predicted measurements ŷe, which are unknown. Here, we
only apply the multi-stage approach for prediction of obstacle
measurements since the road boundaries are constant.

Accordingly, we generate the predicted measurements ŷe

as the scenarios for the msPAC-MPC (9) based on scenarios
for the reference of the lateral obstacle motion re in (16).
Specifically, we consider deviations from the current position
re0|k = xek by half a lane width lw within one sampling time
r̂ej+1|k ∈ {r̂

e
j|k + 0.5lw, r

e
k, r

e
j|k − 0.5lw}.

D. Chance Constraints for Obstacle Avoidance

We enforce collision avoidance by E(p) ≥ 0, where p =
[px py]> = [[xs]1 [xs]2]> and E(p) = (px − [µe]1)2/γ2

Mj +
(py − [µe]2)2/γ2

mn−1 gives an ellipsoid over-approximation
of the obstacle with semi-minor/major axes γmn, γMj.

We obtain ICCs as in (6) by linearizing the collision avoid-
ance constraint, ∇E(p)|>p=xe

b
· (p − xeb) ≥ 0, on a boundary

point xeb ∈ R2. This results in hsxs + hexeb ≤ 0, where
hs = [−he> 0 0]> and he =

[
2([xe

b ]1−[µe]1)

γ2
Mj

,
2([xe

b ]2−[µe]2)
γ2
mn

]
.

By applying the change of coordinate Φ that maps the ellipse
to a circle with radius γmn centered at ([µ̃e]1, [µ̃

e]2) [13], we
select x̃eb as the closest point to the position p

[x̃eb]i = [µ̃e]i +
γmn([x̃s]i − [µ̃e]i)(∑2
i=1([x̃s]i − [µ̃e]i)2

)1/2
, i = 1, 2, (20)

and xeb = Φ−1x̃eb , where for xs and µe we use the previous
step predicted trajectories. Hence, the ICCs take the form

P
[
hsj+1|k−1x

s
j|k + hej+1|k−1(xej|k + ∆xej|k) ≤ 0

]
≥ 1− εl,

where ∆xe = xeb − xe; note that we approximated ∆xej|k =
∆xej+1|k−1 based on the previously predicted trajectory.
ICCs (21) are reformulated as the deterministic constraints

hsj+1|k−1x
s + hej+1|k−1∆xej|k + hej+1|k−1µ

e
j|k

+αl

(
[hej+1|k−1]lΣ

e[hej+1|k−1]>l

)1/2

≤ 0, (21)

where l ∈ Z[1,nc] and αl = F−1
N (1−εl) is the normal inverse

cumulative distribution function.
Remark 3: In msPAC-MPC, and according (6), πisat =∏nc

l=1(1 − εil) is the lower bound for the probability of
satisfying the constraints at each step, conditioned on the
scenarios i ∈ Z[1,Ns]. When the scenarios cover all mea-
surement realizations, by applying the total probability law
across the scenarios, this will also be the lower bound for
the overall probability of satisfying the constraints at each
step, πsat = πisat, for any i ∈ Z[1,Ns].

Remark 4: The approximation of obstacle avoidance by
separating hyperplanes has been shown to be effective in
other applications [13] and is especially appropriate for
automated driving. This is because many perception systems
return detected features as planes or polygons, which could
be handled in the msPAC-MPC problem (9).

E. Cost Function

For vehicle control, the msPAC-MPC cost function (7) is

VN (xsk, Uk,Σ
e
k, r

s
k) =

N−1∑
j=0

(ysj|k − r
s
j|k)Q(ysj|k − r

s
j|k)>

+ usj|kR(usj|k)> + ‖Σ̂ej|k − Σr‖2F , (22)

where ys = [v plat ψrd] is the performance output, plat is
the lateral position with respect to the centerline, ψrd is the
heading angle with respect to the road, which are expressed
by a linear transformation of px, py , ψ based on the road
heading ϑ [12], and rs is the reference vector. In (22), Σr is
the reference for the environment uncertainty, which is here
defined as the steady state of (19b) for [u]i = 0, i = 3, 4, 5.
In (22), we did not include terminal cost and Zf = Rn.
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Fig. 3. Position phase plot snapshots for PAC-MPC (blue) and msPAC-
MPC (dark red) in crossing obstacle scenario: past vehicle trajectory (dot
marker); actual vehicle position (large dot); predicted future trajectories
(dash-dot); actual environment states (obstacle ellipsoid and boundary lines,
solid black); road boundaries (solid red); and lane boundaries (dash).

V. SIMULATIONS

Based on the vehicle control problem described in Section
IV, we evaluate the performance of msPAC-MPC for two
cases: an obstacle changing lanes and a crossing obstacle on
a narrowing road. We consider vehicle motion with respect
to a frame that moves at 8 m/s on the center of the road ,
i.e., p = ([xs]1, [x

s]2) is the position with respect to such
frame. The vehicle parameters are lf = 1.5 m, lr = 2 m,
vmax = 30 m/s, ψmax = 0.8 rad, amin = −7 m/s2, amax = 4
m/s2, δmax = 0.25 rad, ψrd = 0 rad, and Ts = 0.1 s; for
the environment, lw = 2.5 m, γMj = 4 m, γmn = 2 m. The
obstacle moves with the same speed as the frame (8m/s) and,
hence, looks stationary with respect to the moving frame.
The initial conditions for the system states and environment
covariance are the same in the two case studies: xs0 =
[0 0 10 0]> and Σ̂e0 = diag([5 5 1 1]). The vehicle seeks to
maintain a constant speed of 15 m/s with respect to the frame,
while tracking the center of the road with the same heading
angle rs = [0 15 0]>. The covariance of the measurement
prediction error for the PAC-MPC is Σε = 0 in order to
asses the behavior when the design aims not to be over-
conservative. The input-dependent measurement model is
given in Section IV-B and the scenarios for the measurements
are generated as in Section IV-C. The prediction horizon is
N = 10, NB = 2, and the simulation time is 4 s.

A. Obstacle Changing Multiple Lanes

We simulate a car changing multiple lanes to cross the
road orthogonally with respect to the direction of travel.
Fig. 3 shows six snapshots of the phase plot ([xsk]2 vs.
[xsk]1) at time instants k = {5, 10, 15, 17, 19, 30} for the
PAC-MPC trajectory (blue) and the msPAC-MPC trajectory
(dark red). In each snapshot, we show the past trajectories
(dot marks), the current position (larger dot), and predicted
(future) trajectories at current instant (dash-dot).

At the beginning of the simulation (k ≤ 5), the trajectories
of PAC-MPC and msPAC-MPC are indistinguishable since
the vehicle is far from the obstacle and road boundaries

5 10 15 20 25 30 35 40
0

0.5

1

[u
] 3

0 5 10 15 20 25 30 35 40
0

0.5

1

[u
] 4

0 5 10 15 20 25 30 35 40
0

0.5

1

[u
] 5

0 5 10 15 20 25 30 35 40

[x]
1

-10

0

10

20

30

Fig. 4. Sensing inputs and the environment covariance histories with respect
to longitudinal position [x]1 for PAC-MPC (blue) and msPAC-MPC (dark
red) in the crossing obstacle scenario.

and branching up to only 2 steps ahead does not affect the
predicted trajectory. This is also evident from Fig. 4, where
the environment covariance quickly reaches its steady-state
and the sensing inputs remain inactive since there is no need
to reduce the uncertainty to track the desired reference rs.

As the vehicle and obstacle move closer together (k = 10–
17), the sensing inputs become active and the trajectories
of PAC-MPC and msPAC-MPC diverge. Due to the total
sensing budget (18), PAC-MPC and msPAC-MPC reduce
the uncertainty associated with the constraints that pose
a more-imminent “threat” by increasing [us]3, [us]5. This
reduces the environment covariance below its steady-state in
order to find if a feasible path between the moving obstacle
and the bottom road boundary exists. Fig. 3 shows that
msPAC-MPC is more conservative than PAC-MPC because
the multi-stage approach accounts for branching of future
measurements up until the branching horizon, whereas the
PAC-MPC selects its control actions based on the erroneous
belief that the environment measurement will follow its open-
loop prediction model since Σe was set to 0. This results in
a trajectory that touches the obstacle (k = 17) in the case
of PAC-MPC.

In terms of computation time, the msPAC-MPC is more
demanding than PAC-MPC. In this demonstration, the aver-
age time to compute the msPAC-MPC was 0.51 s compared
to 0.16 s for the PAC-MPC. We note that this is a MATLAB
implementation on a mid-range 2018 laptop using a generic
solver, which can be significantly sped-up using specialized
C-coded solvers [14]. The msPAC-MPC computing time can
be modified by the branching horizon NB and by applying
structured solvers for multi-stage optimization, see, e.g., [15].

B. Crossing Obstacle on a Narrowing Road

This case study simulates an obstacle changing multiple
lanes across the road as the road narrows. That is, one road
boundary is constant as in Section V-A, while the other starts
as in Section V-A ([xe0|k]4 = −3.75 m) but quickly narrows
([xe0|k]4 = −1.25 m), representing a lane closure ahead.

Since the obstacle is moving towards the narrowing side
of the road, the corridor for passing the obstacle of Fig. 3
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Fig. 5. Position phase plot snapshots for PAC-MPC (blue) and msPAC-
MPC (dark red) in crossing obstacle on narrowing road scenario: past
vehicle trajectory (dot marker); actual vehicle position (large dot); predicted
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and boundary lines, solid black); road boundaries (solid red); and lane
boundaries (dash).
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Fig. 6. Sensing inputs and the environment covariance histories with respect
to longitudinal position [x]1 for PAC-MPC (blue) and msPAC-MPC (dark
red) in the crossing obstacle on narrowing road scenario.

becomes no longer viable. As such, the linearized constraint
on the ellipse boundary would make it infeasible for the
vehicle to maneuver around the obstacle from the other side.
Thus, in the approach in Section IV-D, we allow to change
separating hyperplane with respect to road boundary if there
is no feasible path. The resulting behavior is shown in Fig. 5,
where the vehicle is able to maneuver around the obstacle
from above. The PAC-MPC intersects the obstacle ellipse,
while the msPAC-MPC manages to remain outside of it;
note that we set Σε = 0. The input profiles in Fig. 6 are
also different since [us]3 and [us]5 are mostly active in the
beginning, when the vehicle is closer to the narrowing road
boundary, and then the algorithm trades [us]5 for [us]4 when
it gets closer to the other boundary. Again, the covariance
goes below its steady-state since the sensing resources are
employed to reduce the uncertainty in the environment in
order to find a feasible path.

VI. CONCLUSIONS

In this paper, we extended the perception-aware chance
constrained MPC (PAC-MPC) with a scenario-based predic-
tion for future measurements, resulting in a multi-stage PAC-
MPC formulation. The msPAC-MPC enforces the chance
constraints without the need for including a conservative
estimate of the measurement prediction error covariance.
We showed how PAC-MPC and msPAC-MPC can be used
for vehicle control in situations where obstacle and road
boundaries are perceived through uncertain sensing of vari-
able quality and when the scenarios are generated based on
possible obstacle actions. In the future, we will speed up
the computations by specialized methods for multi-stage [15]
and chance-constrained MPC [14], and by adaptive scenario
generation.
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