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indicated by the quantitative and qualitative results.
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Learning to Synthesize Volumetric Meshes from

Vision-based Tactile Imprints
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Abstract— Vision-based tactile sensors typically utilize a de-
formable elastomer and a camera mounted above to provide
high-resolution image observations of contacts. Obtaining accu-
rate volumetric meshes for the deformed elastomer can provide
direct contact information and benefit robotic grasping and
manipulation. This paper focuses on learning to synthesize the
volumetric mesh of the elastomer based on the image imprints
acquired from vision-based tactile sensors. Synthetic image-
mesh pairs and real-world images are gathered from 3D finite
element methods (FEM) and physical sensors, respectively. A
graph neural network (GNN) is introduced to learn the image-
to-mesh mappings with supervised learning. A self-supervised
adaptation method and image augmentation techniques are
proposed to transfer networks from simulation to reality, from
primitive contacts to unseen contacts, and from one sensor
to another. Using these learned and adapted networks, our
proposed method can accurately reconstruct the deformation
of the real-world tactile sensor elastomer in various domains,
as indicated by the quantitative and qualitative results.

I. INTRODUCTION

Tactile is an essential sensing modality for humans when

grasping and manipulating objects. Tactile sensors can pro-

vide direct information about contacts during robotic grasp-

ing and manipulation. Vision-based tactile sensors are vari-

ants among different designs for robotic tactile sensors [1]–

[8]. These sensors use a camera to capture high spatial

resolution images of the contact deformation of a piece

of elastomeric gel with an opaque coating as the sensing

surface, as shown in Fig. 1 (a) and (b).

Obtaining a mesh representation of the contact elastomer

can advance the development of applications with vision-

based tactile sensors, since meshes can provide accurate

contact information. For instance, meshes of the elastomer

have enabled in-hand object localization [9]–[11], vision-

free manipulation [12]–[14], and contact profile reconstruc-

tion [3], [4], [15]–[17]. Also, meshes can be used for

precise dynamics simulation [18]–[20] and future state es-

timation [21], [22].

Previous simulation studies [3], [4] for vision-based sen-

sors focus on reconstructing the surface mesh by tracking

markers on the sensor. This can provide the surface displace-

ment fields of the elastomer. However, to better simulate the

dynamics, a volumetric mesh is preferred [19]. Compared

to the surface mesh, the volumetric mesh contains internal

vertices and edges, thus can better encode the dynamics and

estimate the contact profile with the Finite Element Method
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Fig. 1: (a) the GelSlim visual-tactile sensor, (b) the construc-

tion of the sensor, with the elastomer (1), the transparent

lens (2), the lights (3), and the camera (4). (c) a depth image

observation obtained from the sensor, and (d) the correspond-

ing reconstructed volumetric mesh with our method. The red

rectangle denotes the camera’s view range, and the color

represents the displacement level.

(FEM) [18], [23], [24]. Nevertheless, internal elements also

challenge the reconstruction of the volumetric mesh due to

additional dimensions. This paper addresses that challenge

and proposes a method to directly predict the volumetric

mesh from images using vision-based tactile sensors, such

as the GelSlim [4], in a sim-to-real setting. Moreover,

our approach does not rely on fiducial sensor markers to

synthesize a volumetric mesh.

We first employ 3D FEM simulations of the GelSlim

sensor’s elastomer to collect image-mesh data pairs. The

FEM simulations compute volumetric deformation fields

for the elastomer with arbitrary contacts. The depth image

observation is then rendered with synthetic cameras. The

contact experiments are also executed in the real world

with physical GelSlim. However, real-world contacts only

provide images, since ground-truth meshes are unprocurable.

We then learn mappings from real-world images to mesh

deformations (as shown in Fig. 1 (c) and (d)) by leverag-

ing supervised pre-training and self-supervised adaptations.

Specifically, we learn an image-to-mesh projection in latent

space with synthetic data pairs.

Sim-to-real approaches have to overcome the distribution

differences between the two domains, that is the sim-to-

real gap. We propose data augmentation of the synthetic

images together with a self-supervised adaptation method

on real-world images to address this gap. The adaptation

uses a differentiable renderer to project the network output

into images and minimize the difference between projected

and input images. We demonstrate that this adaptation can

transfer networks for sim-to-real, seen contact objects to

novel contact objects, and between different GelSlim sensor

instances. In this paper our goal is to introduce the synthesis

of volumetric meshes from tactile imprints, and will address

applications with our approach in the future work.



Our work makes the following contributions:

• We provide a FEM model for GelSlim tactile sensors

with a GPU-based simulator and propose a method to

calibrate the FEM model with physical GelSlim sensors.

• We collect contact datasets from synthetic and real-

world contact experiments for GelSlim sensors.

• We present an image-to-mesh projection network to re-

construct the volumetric mesh of the elastomer without

the need for fiducial sensor markers.

• We further propose a self-supervised adaptation method

and image augmentation techniques to mitigate the

domain shift of sensor readings.

The problem formulation and details of our method are

described in Section III, followed by experimental results in

Section IV, and a discussion in Section V. We discuss the

related work in the next section.

II. RELATED WORK

A variety of tactile sensing capabilities for robotic ap-

plications have been introduced recently [25], [26]. In this

paper, we limit our discussion to vision-based sensors, such

as GelSight [1], and GelSlim [2].

It is nontrivial to convert the acquired tactile sensory in-

formation to quantities relevant for performing robotic tasks,

such as the grasping force. While data-driven approaches

to tactile sensing are becoming more popular, collecting

large real-world datasets is not feasible due to expense and

potential for damage. A promising solution is to investigate

sim-to-real methods for tactile sensing capabilities.

Typically tactile sensors rely on soft materials, such as

elastomers, wherein the contact results in deformation of the

material. For vision-based tactile sensors, simulation thus

involves modeling both visual and deformation behavior.

Visual output of the GelSight sensor was simulated in [27]

using a depth camera in the Gazebo simulator [28]. The

approach involves computing the heightmap of the elastomer

from the depthmap, and approximating the internal illumi-

nation of the elastomer using a calibrated Phong’s reflection

model. The illumination stage approach is further extended

in [29] by leveraging OpenGL [30]. In our approach, we do

not only attempt to bring the simulated tactile image closer

to the real world, but we also use a data-driven approach

with self-supervised adaption to map from tactile images

to volumetric meshes. Furthermore, our approach has the

potential to help with the need for texture augmentation,

important in real-world robotic applications.

Analytical modeling with FEM simulation can model

contact dynamics [23]. This has been used in the analysis

of the behavior of soft materials for tactile sensing under

various conditions. A variety of simulation methods have

been considered for different types of tactile sensors using

the FEM [3], [10], [31], [32].

The elastomer of the GelSlim tactile sensor is modeled as a

linear elastic material in [3], and the FEM is used to compute

the stiffness matrix to approximate its external forces and

displacements. Using the surface displacements, this matrix

is then used to compute an estimate of the force distribution.

Unlike [3], in our approach we don’t require the use of

fiducial tracking markers to determine the displacement of

the elastomer. Furthermore, we estimate volumetric meshes

directly, which is not explored in prior work. Our approach is

akin to the FEM model of the SynTouch BioTac sensor [32],

in that both learn latent representations for the simulated

sensor deformations and the real-world output through self-

supervision. In contrast to [32], we focus on the image to

volumetric mesh projection for vision-based tactile sensors.

Since image observations from the sensor have higher vari-

ance and are noisy, our problem is more challenging.

III. METHODS

This section first introduces the problem statement and

preliminaries. Next, the image-to-mesh projection and self-

supervised adaptation methods are discussed. Finally, the

datasets are described, including synthetic labeled data, real-

world unlabeled data, and the data augmentation techniques.

A. Problem Statement and Preliminaries

This paper focuses on the problem of reconstructing an

elastomer’s volumetric mesh with image observations for

vision-based tactile sensors. The non-injective projection (or

mapping) from surface images to volumetric vertex positions

makes this problem nontrivial. Some preliminaries are de-

scribed below:

1) Image Observations: Visual tactile sensors typically

contact objects with a silicone elastomer and use a camera

to capture the deformation of the surface, as shown in Fig 1.

The captured RGB image can be used to construct a depth

map of the contact surface using shape from shading [4],

[33]. It establishes a mapping from the RGB color to the

surface normals with a marble of known dimension. During

runtime, surface normals are retrieved and integrated into

the depth map I . Compared to raw RGB images, depth

maps contain 2.5D information and can better represent the

geometry of the contact surface [34]. Moreover, depth maps

are much easier to simulate using synthetic cameras and thus

have less sim-to-real gap. Therefore, in this paper we use

(128×128) depth maps I as the image observations.

2) Volumetric Meshes with FEM: The FEM is a mathe-

matical tool to solve complex partial differential equations

(PDEs) [23]. In the FEM, geometrical shapes are represented

by volumetric meshes M, which consist of 3D elements,

such as tetrahedrons and hexahedrons. With high-resolution

meshes and small computation steps, FEM can estimate the

forward dynamics of soft bodies [18], [24].

This paper uses graphs to represent volumetric meshes.

Specifically, volumetric meshes are defined as a set of

vertices and edges, M = (V,A), with n vertices in 3D

Euclidean space, V ∈ R
n×3. The adjacency matrix A ∈

{0, 1}n×n represents the edges. If vertices i and j are

connected by an edge, Aij = 1, and Aij = 0 otherwise.

B. Supervised Image-to-Mesh Projection

Our goal is to map an input depth map I to a volumetric

mesh M. Although depth maps provide geometrical infor-

mation for the contact surface, the projection from surface
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Fig. 2: Training structure. The image-to-mesh projection

network is optimized with pre-trained autoencoders. The

self-supervised adaptation transfers the projection network

to various domains with a differentiable render.

images to volumetric vertex positions is not injective and

is hard to analyze. Specifically, different displacements can

generate the same surface observation. Thus, in this paper we

assume a fixed mesh tessellation (i.e., A fixed) to enforce

the injective mapping and use a neural network to learn

the underlying projection M̂ = fθ(I), with θ being the

parameters of the network.

The image-to-mesh projection is learned with latent rep-

resentations. Compared to previous work [32], the image

observations have higher variance and more noise. This paper

introduces elaborate model designs, data augmentations, and

self-supervised adaptations to resolve such difficulties.

Fig. 2 shows the training structure of the network. The

image variational autoencoder (VAE) (in green) reconstructs

depth maps I to Î and is trained as a β-VAE:

ℓI = MSE(I − Î) + λIKL(q(zI |I) ‖ N (0, 1)) (1)

where q is the image encoder, λI is the weight for the KL

divergence term, and zI is the latent vector.

We adopt the convolutional mesh autoencoders (COMA)

[35] for the volumetric mesh VAE (shown in blue). COMA

uses spectral graph convolutional networks [36] to extract

features and a hierarchical pooling operation to reduce ver-

tices. The network is trained with:

ℓM = MSE(M−M̂) + λMKL(h(zM |I) ‖ N (0, 1)) (2)

where h is the mesh encoder, λM is the KL loss weight,

zM is the latent vector, and the MSE is computed based on

corresponding vertex positions (V, V̂).
The latent projection model (shown in orange) is com-

prised of three fully connected layers. It is trained in a

supervised manner with the encoder and decoder frozen. The

details for the network are presented in Section IV-A. The

Fig. 3: Left: Primitive indenters in simulation. Right: Novel

contact objects in the real world.

latent dimensions and weights are chosen via hyperparameter

search, which is discussed in Section IV-B.1.

C. Self-Supervised Adaptation

When deploying the trained network to the real world,

covariate shift problems may reduce the performance sig-

nificantly [34]. Moreover, the real-world data only has

depth maps {Ij}, the ground-truth volumetric meshes are

not available, making it hard to fine-tune the network in

a supervised manner. Thus, we propose a self-supervised

adaptation framework (Fig. 2) to resolve the covariate shift.

Specifically, the reconstructed volumetric mesh M̂ is

rendered to the image Ĩ using a differentiable renderer, which

allows gradients to propagate backward. In parallel, we use

the pre-trained image VAE to reconstruct the input depth

map Î . The image VAE works as a noise filter as suggested

in [37]. In practice, removing the image VAE can lead to poor

adaptation results, which is demonstrated in Section IV-C.1.

The network is adapted using the mesh decoder with frozen

weights, to minimize the loss:

ℓadapt = MSE(Ĩ − Î) (3)

D. Datasets

Labeled synthetic data {(Ii,Mi)} and unlabeled real-

world data {(Ij)} are required to train the image-to-mesh

projection and adapt the network among different domains.

1) Synthetic Data: Labeled image-mesh pairs {(Ii,Mi)}
for i ∈ [1, ..., N ] can be simulated using FEM and synthetic

cameras. In this work, FEM is performed using the GPU-

based Isaac Gym [38]. Isaac Gym models the dynamics of

deformable bodies using linear-elastic models and assumes

isotropic Coulomb contacts. The results of the simulation are

optimized to match the real-world deformation.

A FEM model for the GelSlim is created with a similar

procedure as [32]. The elastomer pad is modeled as a cylin-

der with a 1.75cm radius and 0.3cm height. The volumetric

mesh has 5,415 nodes and 23,801 edges. A rigid backplate

is added to imitate the structure of the physical GelSlim,

Fig 1(b). To generate labeled data pairs, 16 primitive inden-

ters (Fig. 3–Left) are utilized to interact with the elastomer

at randomized positions and rotations. The primitive shapes

contain a variety of complexity, texture, and geometry to

reflect daily household objects.

The Isaac Gym simulator collects vertex positions M at

each contact trajectory. The depth map I is then rendered

based on the mesh M with a synthetic camera. This paper



Fig. 4: Data samples. Top: Raw synthetic depth observations,

corresponding ground-truth meshes, and augmented synthetic

depth observations. Bottom: Real-world depth observations

for sample indenters.

uses an orthographic camera with a ±1.75cm view range,

which aligns with the specifications of the physical GelSlim.

To optimize the FEM model in Isaac Gym, this paper reuses

the calibration data in III-A.1, contact images of a marble

of known dimensions. From the depth map I , the contact

position can be accurately estimated by finding the max-

imum displacement point. The contact trajectory can then

be reproduced in the simulation, which yields a deformed

mesh M. Then, a depth image Ĩ is rendered based on the

simulated mesh M. The elastic modulus E, Poisson’s ratio

ν, and surface friction µ are designated as free parameters

in the simulator. A cross-entropy search strategy is used to

find the best parameters:

E, ν, µ = arg min
E,ν,µ

∥

∥

∥
I − Ĩ

∥

∥

∥

The optimal values for E, ν, µ are 145MPa, 0.32, 0.94,

respectively. Fig. 4 shows examples of synthetic data pairs

with the calibrated FEM model.

2) Real-World Data: Real-world datasets {Ij} are ob-

tained with physical GelSlim sensors and various indenters

(Fig. 4). Primitive indenters are 3D printed and interaction

with the sensor is randomized. Besides primitive shapes,

several household and industrial objects are used as a novel

set (Fig. 3–Right). The novel set represents common objects

that the GelSlim will work with. Moreover, we use two

GelSlim sensors to collect real-world data.

3) Image Augmentations: As shown in Fig. 4, the ap-

pearance of synthetic images is quite different from that

of real-world depth maps. The depth reconstruction process

for the physical GelSlim introduces significant noise into

the image, enlarging the sim-to-real gap. To enhance the

performance in the real world, this paper injects Perlin

noise and adds a real-world reference noise image into the

synthetic images [34]. The Perlin noise provides a realistic

gradient for the image and imitates the real-world camera

noise. The reference image provides sensor-specific noise.

Fig. 4 provides examples of the noised images.

In total, 1.28M unique labeled image-mesh pairs were

obtained from the simulator, and 1,651 real-world images

were obtained for 2 GelSlim sensors with 19 indenters.

TABLE I: Experiments with synthetic data pairs. The root-

mean-square error (RMSE, in cm) is measured between

the ground-truth vertex positions M and predicted vertex

positions M̂. (a) the results with different dimensions of

latent space, (b) the results with different loss weights.

(a)

d(zI)
d(zM )

64 128 256

64 0.221 0.152 0.200
128 0.232 0.141 0.192
256 0.210 0.167 0.189

(b)

λI

λM 0 200 400 800

0 0.141 0.073 0.124 0.150
100 0.082 0.012 0.025 0.037
200 0.094 0.035 0.031 0.046

IV. EXPERIMENTS & RESULTS

In this section, we present the network details, experiments

for supervised image-to-mesh projection, self-supervised

adaptation, and a comparative evaluation with a baseline.

A. Network Details

As described in Section III-B and III-C, we use an image

VAE, a mesh VAE, and a latent projection module. In the

image VAE, the encoder includes five downsampling layers

with feature sizes 32, 64, 128, 256, 512 and two fully con-

nected layers with 128 neurons each. In the volumetric mesh

VAE, the encoder consists of four Chebyshev convolutional

filters [36] with feature sizes 16, 16, 16, 32 and an output

fully connected layer with 128 neurons. Each Chebyshev

convolution is down-sampled by a factor of four. The image

and mesh decoder are symmetric with the encoders. The

latent projection module has three fully connected layers

with 256, 512, and 256 neurons. All networks use the Adam

optimizer with a learning rate of 1e− 3 and decay of 0.99.

B. Supervised Projection

Our proposed supervised image-to-mesh projection de-

pends on several hyperparameters. In this section we em-

pirically estimate these. Furthermore, we pre-train the VAEs

prior to training the image-to-mesh projection. We evaluate

the pre-training by comparing with training the image-to-

mesh projection directly from scratch.

The results reported here use a 80/20 split on the synthetic

dataset for training and validation. Each model was trained

for 300 epochs. We report the mean validation root-mean-

square-error (RMSE) for the projected meshes.

1) Latent Dimensions: We compare the image-to-mesh

projection results for a 64, 128, and 256-dimensional la-

tent space for each VAE, shown in Table I (a). The 128-

dimensional latent space for both VAEs gives the best results.

2) Loss Weights: We also compared the effectiveness of

different values for λI , λM , from eqs. (1) and (2), shown in

Table I (b). We can see that the variational encoding, i.e.,

λI > 0, λM > 0, significantly improves the performance of

latent projection, with best performance for λI = 100, λM =



Fig. 5: Image-to-mesh projection results with synthetic data.

First row: Input depth observations. Second row: Corre-

sponding ground-truth mesh. Third row: Reconstructed vol-

umetric mesh with our approach.

Fig. 6: Reconstruction results for the image VAE with real-

world images. First row: Real-world image observations.

Second row: Reconstructed image with pre-trained VAE. The

image VAE can effectively remove visual noises for both

primitive and novel contacts.

200. This suggests that the KL divergence term enforces a

more meaningful latent distribution compared to a vanilla

autoencoder. Fig. 5 shows a batch of projection results using

the best performing model.

3) Pre-training: Given the best performing model, we

investigate the usefulness of the VAE pre-training. We trained

the image-to-mesh network from scratch with variational

encoding. The training and validation errors were 0.009cm

and 0.085cm, respectively. This suggests that the network

overfits without the pre-training, which aligns with the find-

ings presented in [32].

C. Self-Supervised Adaptation

We propose a self-supervised adaptation method and syn-

thetic data augmentations to resolve the covariate shift prob-

lem, as discussed in III-C and III-D.3. This section provides

results and ablation studies for the proposed method. We

show that neither adaptation nor augmentation can achieve

the objective alone, and the image VAE improves the adap-

tation results. Finally, we demonstrate that the proposed

methods can adapt networks from simulation to reality, from

primitive to novel contacts, and from one sensor to another.

The adaptation is performed with the real-world dataset

{Ij}, without ground-truth mesh availability. To evaluate the

performance of the adaptations, we use the RMSE between Î
and Ĩ as the evaluation metric, where Î is the reconstructed

input depth map via the pre-trained image VAE. As shown

in Fig. 6, we can observe that the image VAE is robust in

different domains and can effectively remove noise. Specif-

ically, we tested the VAE on augmented synthetic images.

Results show that the pre-trained image VAE can reconstruct

the clean depth map with a RMSE of 0.07cm.

TABLE II: Experiments with real-world data. The root-

mean-square error (RMSE) is measured between recon-

structed images Ĩ and rendered images Î . (a) ablation studies

for adaptation, data augmentation, and VAE filtering. (b)

domain adaptation results.

(a)

RMSE (cm)

Adapt + Aug. 0.12

No Aug. No Adapt 1.03

Only Aug. 0.57
Only Adapt 0.79

Adapt + Aug. w/o VAE 0.87

(b)

Source → Target RMSE before/after Adaptation (cm)

Sim-Prim. → Real-Prim 0.57 → 0.12
Sim-Prim → Real-Prim-2 0.77 → 0.20
Real-Prim → Real-Prim-2 0.35 → 0.16

Real-Prim → Real-Novel 0.64 → 0.41

Sim-Prim → Real-Novel 1.30 → 0.62
Networks were trained or tuned on source domains and then adapted to

target domains. The RMSEs were measured before and after the
adaptation.

Fig. 7: Experiments with real-world primitive contact ob-

jects. First row: Input depth observations. Second row: Re-

constructed volumetric meshes. Third row: Rendered depth

images from reconstructed meshes.

1) Ablation Studies: We compare the effects of the adap-

tion model, synthetic data augmentations, and image VAE

filtering. The results are listed in Table II (a). As the table

shows, the data augmentation and self-supervised adaptation

both contribute to resolving the sim-to-real gap. We observe

that using only adaptation, or only augmentation, results in

lower performance. The reason for higher performance when

both are combined is two-fold. On one hand, the data aug-

mentation enlarges the distribution of the synthetic dataset,

which causes the real-world data to be within distribution (or

close to). On the other hand, the adaptation model transfers

the network from the simulated distribution to the real-world

distribution, ensuring invariant feature encodings. Table II

(a) also shows that the VAE filter improves adaptation

performance. It removes visual noises in real-world data

and stabilizes the adaptation process. A batch of qualitative

reconstruction examples is shown in Fig 7.

2) Domain Adaptations: Sections III-D.1 and III-D.2 in-

troduce various data domains, including simulated data with

primitive contact objects (Sim-Prim), real-world data with

primitive contact objects (Real-Prim), real-world data with



Fig. 8: Experiments with real-world novel contact objects.

First row: Input depth observations. Second row: Recon-

structed volumetric mesh from the network.

novel contact objects (Real-Novel ), and real-world primitive

data with a second GelSlim sensor (Real-Prim-2 ).

While we showed the performance of the Sim-Prim →
Real-Prim experiment above, Table II (b) and Fig. 8 show

the transfer results among other domains. The networks

were first pre-trained or fine-tuned on source domains and

then adapted to target domains. Experiments Sim-Prim →
Real-Prim, Sim-Prim → Real-Prim-2, and Real-Prim →
Real-Prim-2 were executed with the same primitive shapes.

The adaptation improves performance in all cases. For ex-

periment Real-Prim → Real-Novel, acquisition was done

with the real sensor, but adaptation now is for primitive

to novel shapes. From Table II (b) we see that while the

performance improves, improvement is less compared to the

prior experiments. For the final experiment Sim-Prim →
Real-Novel transfer is both from sim-to-real, as well as

from primitive to novel shapes, and thus is hardest. Again,

adaptation significantly improves performance and predicted

deformations were visually accurate (see Fig. 8). The results

suggest that the proposed adaptation method can effectively

improve the performance of the network under both visual

noise and shape differences.

Overall performance for experiment Sim-Prim → Real-

Novel is less compared to the other experiments. The co-

variate shifts for visual noise and shape differences are not

correlated, and adaptation for each separately performs better

compared to adaptation for both. Further optimizing perfor-

mance for both in a self-supervised manner is a challenging

topic for future work.

D. Baseline Comparisons

For regression from image observations to mesh deforma-

tions, two methods were evaluated: 1) our proposed method,

denoted as Volumetric Mesh, and 2) a surface reconstruction

baseline [3], [4], denoted as Surface Mesh. The latter uses

tracking markers to determine the movement of the elastomer

surface. Note that the Surface Mesh method does not estimate

the volumetric mesh directly, but rather gives a sparse surface

deformation field for each contact.

Fig. 9 shows the reconstructed meshes with both methods.

Interestingly, the computation takes 0.02 sec. for the Volu-

metric Mesh synthesis with our proposed approach versus

0.04 sec. for the Surface Mesh method (potentially due to

the requirement of marker detection). Fig. 9 shows corre-

spondences between the Volumetric Mesh and the Surface

Mesh on the elastomer surface. In addition, we also con-

ducted contact force estimations of the GelSlim based on

0 mm

2 mm

0.4 mm

0.8 mm

1.2 mm

1.6 mm

0 N

1.1 N

0.22 N

0.44 N

0.66 N

0.88 N

Fig. 9: First row: Reconstructed meshes and estimated con-

tact forces with the proposed approach, Volumetric Mesh.

Second row: Comparison with baseline method, Surface

Mesh [4].

the predicted meshes. An inverse FEM was used to compute

the contact force with a linear-elastic model [4]. Compared

to the Surface Mesh method, our method constructed more

plausible and denser force distributions with the volumetric

FEM mesh (Fig. 9). For example, predictions around contact

edges were more realistic and had higher resolution. Pre-

dicted force profiles were also smoother, which was due to

the influence of internal vertices. We hypothesize that such

denser force distributions obtained from our method may

help improve policy learning for robotic manipulation tasks.

V. DISCUSSION AND CONCLUSION

This paper presents a framework to synthesize volumet-

ric meshes of vision-based tactile sensor for novel contact

interactions. Our work has several key contributions. First,

we present a 3D FEM simulator for vision-based tactile

sensors and a simulator calibration approach. Second, we

generate a dataset for the GelSlim sensor with both simulated

and real-world contacts using primitive and novel shapes.

Third, we propose a label-free adaptation method and im-

age augmentations for domain transfers; we show that this

approach can effectively transfer networks to various visual

and different shape scenarios. Lastly, our network efficiently

reconstructs the volumetric mesh with depth images and

precisely estimates the contact profiles of different shapes.

Using these learned and adapted networks, our method can

reconstruct the deformations of the elastomer for vision-

based tactile sensors in various domains, as indicated by the

quantitative and qualitative results.

The present work also has some limitations. First and

foremost, although volumetric meshes can obtain dense

force estimation and contact patch reconstruction, we do not

explicitly demonstrate the application of tactile volumetric

meshes on a robotic task. Instead, the focus of this work is

on the synthesis of volumetric meshes from tactile imprints.

Second, the current network cannot predict the dynamics

of the elastomer, which may be prohibitive for performing

model predictive control applications, as these require valid

prediction of futures. In our future work, we will focus on

addressing these limitations and develop volumetric mesh-

based techniques for extensive robotic manipulation tasks,

such as rope manipulation, peg-in-hole insertion, extrinsic

contact estimation, and contact prediction.
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