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Robust Model Predictive Control with Data-Driven Koopman Operators

Giorgos Mamakoukas, Stefano Di Cairano, and Abraham P. Vinod

Abstract— This paper presents robust Koopman model pre-
dictive control (RK-MPC), a framework that leverages the
training errors of data-driven models to improve constraint
satisfaction. Koopman-based control has enabled fast nonlinear
feedback using linear tools, but existing approaches ignore the
modeling error during control, which can lead to constraint
violations. Our approach assumes that the unknown dynamics
are Lipschitz-continuous and uses the training error of data-
driven Koopman models to approximate a Lipschitz constant
for the state- and control-dependent model error. We then use
the Lipschitz constant to bound the prediction error along the
planning horizon and formulate a convex, robust finite-horizon
optimal control problem that is real-time implementable. We
demonstrate the efficacy of this approach with simulation
results using the dynamics of a forced Duffing oscillator and a
quadrotor. Our Python implementation can run in real-time at
66Hz for the 17-dimensional duffing oscillator and at 12Hz for
the 44-dimensional quadrotor on a standard laptop.

I. INTRODUCTION

Robotics often involve applications where a model of the
system dynamics is not available (e.g., soft robotics [1], [2],
human-robot interaction [3]), is tedious to develop, or com-
plicated enough to present challenges for high-fidelity real-
time implementation [4]. Further, the dynamics of robots or
their environments can change, rendering models inaccurate
[5]–[7]. These challenges have motivated researchers to seek
data-driven methods to identify, update, and simplify models
[8]–[11] or directly learn successful control policies [12],
[13]. However, models and policies learned from data involve
uncertainty, which creates a challenge in providing safety and
performance guarantees.

Safe data-driven control, in particular, has recently at-
tracted a lot of research interest, with several efforts fo-
cusing on reinforcement learning [14]–[19] and synthesis
of constrained learning-based control techniques [20]–[25].
However, these methods often require a significant amount of
data. Another line of research uses robust control methods
[26] to provide solutions that guarantee the satisfaction of
state constraints against the worst-case effect of uncertainty.
These methods typically propagate the model uncertainty
into the future and generate a set of possible deviations
from the nominal prediction. Then, they use the worst-
case deviation to tighten the state constraints accordingly to
ensure safe control [27]–[34].

Despite the promise of these efforts, existing algorithms
face limitations. Some make restricting assumptions regard-
ing the model uncertainty, e.g., that the error is independent
of control, state, or both, or that it is upper bounded by
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a value that is known. Other methods apply only to linear
systems, or are computationally expensive and cannot be im-
plemented in real-time. Moreover, most of these algorithms
require their training set to cover a sufficiently large part
of the state space. To address these challenges, we propose
a data-driven, real-time implementable approach based on
Koopman operators and robust control for a priori unknown,
possibly nonlinear dynamics, while explicitly accounting for
state- and control-dependent model uncertainty.

Koopman operators evolve linearly higher-dimensional,
lifted functions of the system states without loss of accuracy
everywhere in the state-space. The ability to use linear tools
for nonlinear prediction and control has attracted recent re-
search efforts in robotics and control [35]. Because Koopman
operators are typically infinite-dimensional, researchers focus
on either i) finding finite-dimensional Koopman eigenspaces
from data [36]–[42] or ii) obtaining approximate Koopman
models that offer a balance between high accuracy and low
dimensionality [43], [44]. The linearity of Koopman repre-
sentations is desirable due to the computational efficiency,
the convexity of dynamical constraints. and, when a finite-
dimensional Koopman model exists without model error,
the improved control performance [36]. Koopman models
have been successfully used with model predictive control
[45] and LQR [44] and have shown great promise in many
applications, such as in soft [2], [46] and underwater [44]
robotics. For a more comprehensive review of Koopman
operator theory, we refer the reader to [47].

We present a novel approach for constrained data-driven
control of unknown systems by combining Koopman rep-
resentations with robust model predictive control. The pro-
posed method, which requires only that the unknown dynam-
ics are Lipschitz continuous, synthesizes controllers that are
cognizant of the model error and yields convex optimization
problems that can be solved via off-the-shelf solvers. The
proposed approach, which we call robust Koopman model
predictive control (RK-MPC), consists of two key contribu-
tions: 1) characterization of the state- and input-dependent
modeling error for data-driven Koopman models using Lip-
schitz analysis, and 2) tightened state-constraints along the
prediction steps in the presence of state- and input-dependent
uncertainty for Koopman operators. The proposed approach
utilizes library-free Koopman models that are synthesized
using only past state and control measurements, without the
need to search for basis functions.

II. PRELIMINARIES & PROBLEM STATEMENTS

We use the following notation throughout the paper: The
interval N[a,b] enumerates all natural numbers between and



including a, b ∈ N; Sn is the Cartesian product of the set S
with itself n-times for any n ∈ N; In and 0n×m denote the
n × n identity and n × m zero matrices, respectively; ‖x‖
is the 2-norm of x ∈ Rn; ‖A‖op = supx∈Rn(‖Ax‖/‖x‖) is
the operator-norm of A ∈ Rm×n; x ·y is the inner product of
x, y ∈ Rn; x> is the transpose of x ∈ Rn; and Ball(c, r) =
{x ∈ Rn : ‖x − c‖ ≤ r} is a n-dimensional ball of radius
r > 0 centered at c ∈ Rn. Last, we refer to a function
f : Rn → R as Lipschitz continuous, when ‖f(x)−f(y)‖ ≤
Lf‖x−y‖ for any x, y ∈ Rn for some constant Lf > 0. We
denote such a function to be Lf -Lipschitz, and refer to Lf
as the Lipschitz constant of f .

A. Hankel Koopman theory for nonlinear systems

In this subsection, we review Hankel Koopman models
for nonlinear systems [48]. Throughout this paper, we as-
sume that the true dynamics of a system are unknown and
nonlinear and expressed as

xt+1 = f(xt, ut) (1)

with state xt ∈ X ⊂ Rn, input ut ∈ U ⊂ Rm, and
dynamics f : X × U → X . Hankel Koopman theory
uses delay measurements to form the Koopman basis func-
tions. Let dx, du ∈ N denote the number of delay state-
and control-dependent measurements used in the Koopman
model, respectively. Then, Hankel Koopman theory uses an
N -dimensional lifted state Ψt,

Ψt =
[
x>t h>t

]>
=
[
x>t x>t−1 · · · x>t−dx u

>
t−1 · · · u>t−du

]>
,

where N = n+ ndx +mdu and ht ∈ RN−n is the
corresponding history of states and inputs at time t. We
further define ht as a (N − n)-dimensional zero vector.

We express the dynamics in the lifted state space using a
tuple (A,B,C), where

Ψt+1 = AΨt +But + ε(Ψt, ut) (2a)

=

[
Adata
Afixed

] [
xt
ht

]
+

[
Bdata
Bfixed

]
ut +

[
εx(Ψt, ut)

0

]
xt , CΨt, (2b)

where Adata ∈ Rn×N and Bdata ∈ Rn×m are obtained
from data, Afixed ∈ R(N−n)×N and Bfixed ∈ R(N−n)×m are
defined by the appropriate time shifts in the history ht, and
C ∈ Rn×N is the projection matrix that projects Ψt back to
xt. In practice, we compute (Adata, Bdata) using a closed-form
least-squares solution, as in [44], and set (Afixed, Bfixed)

Afixed =

 Indx 0(ndx)×(mdu) 0n×n
0m×(ndu) 0m×(mdu) 0n×n

0(m(du−1))×(ndu+1) Im(du−1) 0(m(du−1))×m

 ,
Bfixed =

 0(ndx)×m
Im

0((m−1)du)×m

 .
Given our choice of (Afixed, Bfixed), the modeling error ε :
RN ×U → RN in the Koopman model is explicitly defined
by the modeling error in the low-dimensional state εx, where

εx(Ψt, ut) , f(CΨt, ut)−AdataΨt −Bdataut. (3)

Using (3), the nonlinear model (1) and the Koopman model
(2) provide an identical description of the dynamics.

B. Problem setup

Given the current state x0, we consider the following
optimization problem to be solved at every MPC iteration,

min.
u0,...,uT−1

J(x1, . . . , xT , u0, . . . , uT−1) (4a)

s. t.
{

Terminal constraints on xT
for recursive feasibility,

(4b)

t ∈ N[0,T−1], xt+1 = f(xt, ut), (4c)
t ∈ N[0,T−1], ut ∈ U , (4d)
t ∈ N[1,T ], xt ∈ SafeSet, (4e)

where SafeSet = ∩i∈[NS ]{pi ·x ≤ q} ⊂ X defines a polytope
formed from NS ∈ N hyperplanes with pi ∈ Rn and qi ∈ R.
In this work, we choose a quadratic cost J : X T ×UT → R

J =
T∑
t=1

(
xt − xtarget

t

)
·
(
Q
(
xt − xtarget

t

))
+

T−1∑
t=0

ut · (Rut),

where xtarget
t ∈ X is a user-specified target state.

Consider ND training measurements of the lifted state Ψtr
i ,

the input utr
i , and the next lifted state (Ψtr

i )
+. Then, using

(3) and (2b), the modeling error at the training points is

εx(Ψtr
i , u

tr
i ) = C(Ψtr

i )
+ −AdataΨ

tr
i −Bdatau

tr
i . (5)

Using Hankel Koopman theory, we express (4) with decision
variables u0, u1, . . . , uT−1 and current lifted state Ψ0:

minimize J(CΨ1, . . . , CΨT , u0, . . . , UT−1) (6a)

subject to
{

Terminal constraints on ΨT

for recursive feasibility,
(6b)

t ∈ N[0,T−1], Ψt+1 = AΨt +But + ε(Ψt, ut), (6c)
t ∈ N[0,T−1], ut ∈ U , (6d)
t ∈ N[1,T ], CΨt ∈ SafeSet. (6e)

We emphasize that (6) is an exact reformulation of (4) and
does not introduce any approximation.

Existing approaches in Koopman MPC [44]–[46] typically
ignore the modeling error ε and the issue of recursive feasi-
bility and solve the following convex optimization problem:

minimize J(CΨ1, . . . , CΨT , u0, . . . , UT−1) (7a)
subject to

t ∈ N[0,T−1], Ψt+1 = AΨt +But, (6d), (6e). (7b)

However, (7) can be infeasible due to the modeling error and
the lack of recursive feasibility constraints, especially when
the modeling error is high. This motivates Problem 1.

Problem 1. Given a general nonlinear system
(1) and a Koopman model (2) trained on data
{Ψtr

i , u
tr
i , ε(Ψ

tr
i , u

tr
i )}ND

i=1, characterize the a priori unknown
modeling error ε using Lipschitz analysis, model its effect
on the state constraints, and propose a convex conservative
approximation of (6).



III. ROBUST KOOPMAN MODEL PREDICTIVE CONTROL

In this section, we present the proposed convex, robust
Koopman model predictive control (RK-MPC) framework.
RK-MPC consists of an offline and an online phase. Offline,
we learn the linear dynamics in the lifted space (Adata, Bdata)
from training data, and also characterize the Lipschitz con-
stant of the modeling error εx. Online, we formulate a finite-
horizon convex, robust optimal control problem that makes
use of the data-driven error Lipschitz constant to approximate
state- and control- dependent bounds on the modeling error.

We organize this section as follows. First, we propose a
Lipschitz-based characterization of the modeling error. Next,
we formulate a robust optimal control problem under Lips-
chitz continuous state- and input-dependent uncertainty. We
conclude with a discussion of the strengths and weaknesses
of the proposed approach.

A. Lipschitz-based characterization of the modeling error

To extrapolate the modeling error of a data-driven Koop-
man representation beyond the training set, we make the
following assumption.

Assumption 1 (LIPSCHITZ MODELING ERROR). The mod-
eling error εx is Lε-Lipschitz for some Lε > 0.

A consequence of Assumption 1 is that the modeling error
ε is also Lipschitz continuous with a Lipschitz constant Lε.
Further, the evaluation of the a priori unknown modeling
error εx at any query lifted state-input pair (Ψ, u) satisfies
the following characterization based on the training data:

εx(Ψ, u) ∈
ND⋂
i=0

Ball

(
εx(Ψtr

i , u
tr
i ), Lε

∥∥∥∥[ Ψ−Ψtr
i

u− utr
i

]∥∥∥∥) .
(8)

In other words, the uncertainty in the modeling error εx
grows as the query point (Ψ, u) grows further away from
the training points.

We note that Assumption 1 holds for a system with
Lipschitz-continuous dynamics, which include any continu-
ously differentiable dynamics defined over a compact set X .
Examples of such dynamics include Dubin’s car, quadrotors,
and the forced Duffing oscillator. In the remainder of this
section, we show that Assumption 1 is not restrictive and
show how we estimate Lε in practice.

Proposition 1 (LIPSCHITZ DYNAMICS IMPLY LIPSCHITZ
MODELLING ERROR). Let f be Lf -Lipschitz over a set X .
Then, the modeling error εx is Lipschitz-continuous, with a
Lipschitz constant Lε = Lf + ‖C[A B]‖.

Proof. See Appendix A.

Proposition 1 provides a Lipschitz constant for εx in terms
of the Lipschitz constant Lf of the underlying nonlinear
dynamics (1) and Koopman model (A,B,C). However, Lf
may not be available in practice. Alternatively, we compute
Lε using a finite set of data points Z = {(Ψi, ui)}NZ

i=1 to

obtain a lower bound L−ε of the true Lipschitz constant Lε,

L−ε (Z) , max
i,j∈N[1,NZ ]

i 6=j

‖εx(Ψi, ui)− εx(Ψj , uj)‖∥∥∥∥[ Ψi −Ψj

ui − uj

]∥∥∥∥ . (9)

Recently, authors in [25] proposed a more data-intensive al-
gorithm to obtain a probabilistic upper bound of the Lipschitz
constant. There, the researchers use a collection of data sets
obtained by uniformly sampling the space, and use statistical
methods to obtain the upper bound with sufficiently high
confidence. While the result from [25] can be used here as
well to provide probabilistic guarantees, the estimation of the
Lipschitz constant using (9) is less data-intensive and does
not require uniform sampling of the state space.

B. Robust control under Lipschitz uncertainty

Since the modeling error along the prediction horizon is
unknown, we utilize the modeling error at the measurements
as a surrogate for the model error along each step of the
prediction horizon in (6). Using this notion of surrogate tra-
jectories, we obtain a tractable conservative approximation
of (6) based on robust optimal control.

Definition 1 (SURROGATE TRAJECTORY). Given an open-
loop control sequence {ut}T−1

t=0 and an error sequence
{εsur
t }

T−1
t=0 with εsur

t ∈ RN , we define a surrogate trajectory
{Ψsur

t }
T
t=0 with Ψsur

0 = Ψ0 as follows,

Ψsur
t+1 = AΨsur

t +But + εsur
t . (10)

We refer to εsur
t as the surrogate uncertainty at time t.

For any open-loop control sequence, we use the surrogate
trajectory to approximate the true lifted trajectory without
relying on the unknown modeling error. For every halfspace
pi · (CΨt) ≤ qi in SafeSet, we upper bound pi · (CΨt) as
follows

pi · (CΨt) ≤ pi · (CΨsur
t ) + ‖pi · (C(Ψt −Ψsur

t ))‖. (11)

by adding and subtracting (CΨsur
t ). Therefore, for any choice

of back-off variables Γi,t that satisfies ‖pi ·C(Ψt−Ψsur
t )‖ ≤

Γi,t, it is true that

pi · (CΨsur
t ) + Γi,t ≤ qi, ∀i, t =⇒ CΨt ∈ SafeSet. (12)

We then use (12) to arrive at the following problem:

min.
u0,...,uT−1

Γ1,1,...,ΓNS,T

J(CΨ1, . . . , CΨT , u0, . . . , uT−1) (13a)

s. t. Ψsur
T ∈ TerminalConstraintSet, (13b){
Constraints on Ψsur

t , ut,Γi,t
for ‖pi · C(Ψt −Ψsur

t )‖ ≤ Γi,t
(13c)

t ∈ N[0,T−1], Ψt+1 = AΨt +But + ε(Ψt, ut), (13d)

t ∈ N[0,T−1], Ψsur
t+1 = AΨsur

t +But + εsur
t , (13e)

t ∈ N[0,T−1], ut ∈ U , (13f)
t∈N[1,T ], i∈N[1,NS ], pi · (CΨsur

t ) + Γi,t ≤ qi. (13g)

We construct a tractable convex approximation of (6) by 1)
characterizing a set TerminalConstraintSet ⊆ RN for the



recursive feasibility of (13), and 2) obtaining a collection of
convex constraints to enforce (13c) without relying on the
unknown modeling error ε in (13d).

1) Recursive feasibility constraint (13b): We ensure re-
cursive feasibility of (13) by identifying an invariant set of
a Koopman model (2) that is controlled by a pre-determined
state-feedback controller. Recall that a set of states S is said
to be invariant for a system xt+1 = g(xt) when x0 ∈ S
implies xt ∈ S for all time t > 0.

Proposition 2 (INVARIANT SET FOR KOOPMAN MODELS).
Let the dynamics (1) have a stable equilibrium (Ψst, ust),
i.e., f(xst, ust) = xst = CΨst. Choose K ∈ Rm×N
satisfying the following convex constraint,

‖A+BK‖op + Lε max
(
‖K‖op, 1

)
≤ 1. (14)

Then, Ball(Ψst, r) is invariant for a Koopman model (2)
under the time-invariant, state-feedback control law ut =
uinv(Ψ) = K(Ψ−Ψst) + ust for all time t.

Proof. See Appendix B.

The convex constraint (14) requires that the state-feedback
gain K contracts the Koopman model (‖A+BK‖op ≤ 1),
while also requiring that the modeling error and its effect
on the state is minimal (Lε ≤ 1 and Lε‖K‖op ≤ 1).
However, in order to use Proposition 2 as the terminal
constraint in (13), we additionally require that r > 0 be
such that 1) the state-feedback control law for invariance
respects the control constraints, i.e., uinv(Ψ) ∈ U for every
Ψ ∈ Ball(Ψst, r), and 2) the projection of the invariant
set on the low-dimensional state space is also safe, i.e.,
CBall(Ψst, r) ⊆ SafeSet.

Proposition 3 (RECURSIVE FEASIBILITY CONSTRAINT).
Assume that the input set U be a polytope (U = ∩NU

i=1{v :
hi · v ≤ gi} for some NU ∈ N, hi ∈ Rm, gi ∈ R). Let the
stable equilibrium (Ψst, ust) used in Proposition 2 be such
that xst = CΨst ∈ SafeSet and ust ∈ U , yielding a gain
matrix K satisfying (14). Then, for rmax defined as follows,

rmax = min

(
min

i∈N[1,NS ]

qi − pi · xst

‖C>pi‖
, min
i∈N[1,NU ]

gi − hi · ust

‖K>hi‖

)
,

the set TerminalConstraintSet = Ball(Ψst, rmax) ensures
recursive feasibility of (13).

Proof. See Appendix C.

Using Proposition 3, we have identified a subset of the
set SafeSet within which the low-dimensional dynamics
are guaranteed to remain invariant. Consequently, enforcing
the terminal set constraints on ΨT is sufficient to ensure
recursive feasibility.

2) Bounding the error between the true and the surrogate
trajectories (13c): To upper-bound ‖pi · C(Ψt − Ψsur

t )‖,
we characterize a sequence of auxiliary decision variables
{∆t}Tt=0 such that ‖Ψt − Ψsur

t ‖ ≤ ∆t for every t ∈ N[0,T ]

(∆0 = 0 from Ψ0 = Ψsur
0 ). Then, we utilize ∆t to compute

the backoff variables Γi,t. Figure 1 illustrates ∆t.

X

RN

x0

Ψ0 Ψsur
1

Ψ1

xsur
1

x1

Ψsur
T

ΨT

xsur
T

xT

Ψt ∈ Ball(Ψsur
t ,∆t)

Fig. 1: Illustration of the true trajectory Ψt, the surrogate
trajectory Ψsur

t , and the auxiliary decision variable ∆t that
bounds the error between Ψt and Ψsur

t from above.

Proposition 4 (BACKOFF VARIABLES). Given a sequence
of surrogate uncertainty terms {εsur

t }
T−1
t=0 and a sequence

of training points (Ψtr
t , u

tr
t )

T−1
t=0 , enforce (13c) with the

following collection of convex constraints in Ψsur
t , ut, Γi,t

and ∆t defined for every i ∈ N[1,NS ] and t ∈ N[1,T ],

Γi,t ≥ ‖pi · C‖
(
Lε

∥∥∥∥∥
[

Ψsur
t−1 −Ψtr

t

ut−1 − utrt

]∥∥∥∥∥+ ‖ε(Ψtr
t−1, u

tr
t−1)− εsurt−1‖

)
+ (‖pi · CA‖+ Lε‖pi‖)∆t−1, (15a)

∆t ≥ Lε

∥∥∥∥∥
[

Ψsur
t−1 −Ψtr

t−1

ut−1 − utrt−1

]∥∥∥∥∥+ ‖ε(Ψtr
t−1, u

tr
t−1)− εsurt−1‖

+ (‖A‖+ Lε)∆t−1. (15b)

Then, ‖pi·C(Ψt−Ψsur
t )‖ ≤ Γi,t ∀ i ∈ N[1,NS ] and t ∈ N[1,T ].

Proof. Equations (16) and (17) on page 5 follow from trian-
gle inequality, the Lipschitz continuity of ε, the definition of
the operator norm ‖A‖, and the observation that εx = Cε.
We obtain (15a) and (15b) by defining Γi,t and ∆t as upper
bounds of the RHS of (16) and (17).

Proposition 4 proves that (13c) can be conservatively
enforced without the use of the unknown true trajectory
{Ψt}Tt=0 defined in (13d).

3) Conservative convex approximation of (4): We now
formulate the conservative convex approximation of (4),
based on the results presented in the previous subsections.
Given a sequence of surrogate uncertainty terms {εsur

t }
T−1
t=0

and a sequence of training points {(Ψtr
t , u

tr
t )}T−1

t=0 , consider
the following convex program

minimize
u0,...,uT−1,Γ1,1,...,ΓNS,T

∆1,...,∆T

(13a)

subject to ΨT ∈ Ball(Ψst, rmax),
(13e), (13f), (13g), (15).

(18)

Proposition 5. Every feasible solution of the convex program
(18) is feasible for (6).

Proof. Follows from Proposition 4 and (11).

By Proposition 5, we conclude that the optimization
problem (18) solves Problem 1. The problem (18) can be
solved via off-the-shelf solvers [49].



For any time t ∈ N[1,T ],

‖Ψt −Ψsur
t ‖ = ‖AΨt−1 +But−1 + ε(Ψt−1, ut−1)−AΨsur

t−1 −But−1 − εsurt−1‖
= ‖AΨt−1 +But−1 + ε(Ψt−1, ut−1)−AΨsur

t−1 −But−1 − εsurt−1 + ε(Ψsur
t−1, ut−1)− ε(Ψsur

t−1, ut−1)‖
≤ ‖A(Ψt−1 −Ψsur

t−1)‖+ ‖ε(Ψt−1, ut−1)− ε(Ψsur
t−1, ut−1)‖+ ‖ε(Ψsur

t−1, ut−1)− εsurt−1‖
≤ (‖A‖+ Lε)‖Ψt−1 −Ψsur

t−1‖+ ‖ε(Ψsur
t−1, ut−1)− εsurt−1 + ε(Ψtr

t−1, u
tr
t−1)− ε(Ψtr

t−1, u
tr
t−1)‖

≤ (‖A‖+ Lε)‖Ψt−1 −Ψsur
t−1‖+ Lε

∥∥∥∥[ Ψsur
t−1 −Ψtr

t

ut−1 − utr
t

]∥∥∥∥+ ‖ε(Ψtr
t−1, u

tr
t−1)− εsurt−1‖. (16)

For any time t ∈ N[1,T ] and i ∈ N[1,NS ],

‖pi · C(Ψt −Ψsur
t )‖ = ‖pi · C(AΨt−1 +But−1 + ε(Ψt−1, ut−1)−AΨsur

t−1 −But−1 − εsurt−1)‖
= ‖pi · C(AΨt−1 +But−1 + ε(Ψt−1, ut−1)−AΨsur

t−1 −But−1 − εsurt−1 + ε(Ψsur
t−1, ut−1)− ε(Ψsur

t−1, ut−1))‖
= ‖pi · CA(Ψt−1 −Ψsur

t−1) + pi · (εx(Ψt−1, ut−1)− εx(Ψsur
t−1, ut−1)) + pi · C(ε(Ψsur

t−1, ut−1)− εsurt−1)‖
≤ ‖pi · CA(Ψt−1 −Ψsur

t−1)‖+ ‖pi‖‖εx(Ψt−1, ut−1)− εx(Ψsur
t−1, ut−1)‖+ ‖pi · C‖‖ε(Ψsur

t−1, ut−1)− εsurt−1‖

≤ (‖pi · CA‖+ Lε‖pi‖)‖Ψt−1 −Ψsur
t−1‖+ ‖pi · C‖

(
Lε

∥∥∥∥[ Ψsur
t−1 −Ψtr

t

ut−1 − utr
t

]∥∥∥∥+ ‖ε(Ψtr
t−1, u

tr
t−1)− εsurt−1‖

)
.

(17)

Algorithm 1: Robust Koopman MPC

Input: Training points {Ψtr
i , u

tr
i , (Ψ

tr
i )

+}
ND

i=1, initial lifted
state Ψ0, SafeSet, Stable eq. (Ψst, ust), cost function J .

1: Compute (A,B,C) using {Ψtr
i , u

tr
i , (Ψ

tr
i )

+}
ND

i=1,
2: Compute TerminalConstraintSet using Prop. 3,
3: for each iteration of MPC . Current time is set to zero
4: Compute εsur

t and {(Ψtr
t , u

tr
t )}Tt=0 using (19)

5: Solve (18) to obtain {ut}T−1
t=0

6: Apply u0

Next, we discuss a selection strategy for the sequence of
training points (Ψtr

t , u
tr
t )

T−1
t=0 and the sequence of surrogate

uncertainty terms {εsur
t }

T−1
t=0 . We first solve the following

convex program,

minimize
u0,...,uT−1

T∑
t=1

(
CΨt − x0

)
·Q
(
CΨt − x0

))
+

T−1∑
t=0

ut · (Rut)

subject to
t ∈ N[0,T−1], Ψt+1 = AΨt +But, ut ∈ U ,
t ∈ N[1,T ], CΨt ∈ SafeSet,

(19)

where the cost in (19) penalizes the deviations from the
current state (t = 0) instead of the target state. We then
compute the sequence of training points {(Ψtr

t , u
tr
t )}Tt=1 that

is closest to the solution of (19), and set εsur
t = ε(Ψtr

t , u
tr
t ).

The optimization problem (19) is inspired from (7), but
modified to avoid the potential infeasibility when attempting
to move towards the target. Instead, (19) seeks an open-loop
control sequence that keeps the system safe, while minimiz-
ing deviations from its current position. Consequently, (19)
typically remains feasible, even when the (7) is infeasible.

We summarize the proposed approach in Algorithm 1.

C. Strengths and weaknesses of the proposed approach

Our approach has several advantages over existing Koop-
man approaches [45]. First, our approach considers the mod-
eling error ε in the state constraint and recursive feasibility

enforcement explicitly. Second, our approach can be easily
implemented for real-time control, thanks to the convex
formulation (18) of the model predictive control problem
(6). Third, our approach utilizes Hankel Koopman modeling,
which frees the designer from the need to select/hand-craft
the basis functions for the Koopman-based control.

The main shortcoming of our approach is the reliance on
Lipschitz continuity of the uncertainty (Assumption 1). The
assumption of Lipschitz continuity of unknown functions is
becoming more prevalent in data-driven control literature for
the purposes of rigorous analysis [25], [50]. However, the
presented theoretical guarantees (see Proposition 4) rests on
the use of an exact value or upper bound of the Lipschitz
constant Lε, which is typically hard to obtain. Our numerical
experiements show that the lower bound on the Lipschitz
constant (9) may be sufficient in practice to obtain approxi-
mate safety guarantees.

IV. NUMERICAL RESULTS

In this section, we demonstrate that the proposed RK-
MPC approach has the superior constraint satisfaction of
over the nominal MPC, without compromising real-time
implementability. All computations were done in Python
using CVXPY [52], ECOS [53], and CVXOPT [49].

A. Forced Duffing Oscillator

Consider states x = [xp, yp] ∈ R2 and control u ∈ R with
dynamics given by

dx

dt
=

[
yp

axp + bx3
p + dyp + u,

]
(20)

where a = 1, b = −1, and d = −0.5. To train a Koopman
model, we choose delay basis functions with nd = 3,
sampling time ts = 0.1, planning horizon T = 10. To
generate training data, we simulate 5 training trajectories by
propagating the dynamics for 6 steps with random control,
resulting in ND = 30. Each training trajectory starts from
the initial condition specified for evaluation. We compare
nominal and robust Koopman MPC for two cases: initial



Fig. 2: Regulation of the forced Duffing oscillator using nominal and robust Koopman MPC from two initial conditions.

Fig. 3: Data-driven waypoint tracking for a quadrotor us-
ing robust Koopman model predictive control. We use the
gym-pybullets-drones environment [51] for simulat-
ing the proposed data-driven approach.

Experiment Nominal MPC RK-MPC (Ours)
Duffing oscillator 0.005 0.012 0.061 0.012 0.016 0.324

Quadrotor waypoint 0.027 0.036 0.217 0.062 0.079 1.184

TABLE I: Min, mean, and max compute times for MPC
iterations (in seconds) measured on a standard laptop (Intel
i7-10510 CPU, 16 GB RAM).

conditions [0.5, 0] and [−0.5,−2], and target states [−1.25, 0]
and [0, 0] respectively. We select the state constraints are
−3 ≤ xi ≤ 0.75 for i = 1, 2.

Fig. 2 shows that RK-MPC reaches the target while
satisfying the state constraints, whereas the nominal Koop-
man MPC fails. We observe that in the first case, the
nominal Koopman MPC fails to reach the target, while
in the second case it results in constraint violation. The
superior performance of RK-MPC may be attributed to the
explicit consideration of the model uncertainty, leading to a
conservative state constraint enforcement.

Table I shows that RK-MPC is real-time implementable,
despite the explicit consideration of the modeling errors. On
average, RK-MPC solved the MPC problem at ≈ 62.5 Hz.

We emphasize that the quality of the data-driven model
plays an important role in these results. The Lipschitz
constant L−ε was estimated from the data to be 0.0013 and
0.0003, respectively. One can expect that poor data-driven
models to have larger Lipschitz constants, which can lead
to a higher degree of conservativeness in the state constraint

enforcement of RK-MPC.

B. Waypoint regulation of a quadrotor

Next, we demonstrate robust Koopman model
predictive control to navigate a quadrotor to a
desired waypoint using only data. For the simulation,
we use gym-pybullets-drones framework,
that provides a simulation environment based on
Bitcraze’s CrazyFlies [51]. The quadrotor states are
x = [xp, yp, zp, θ, ψ, φ, vx, vy, vz, ωx, ωy, ωz]

> ∈ R12,
where xp, yp, zp are the world-frame coordinates, θ, ψ, φ
express the world-frame Euler angles, vx, vy, vz are the
world-frame velocities, and ωx, ωy, ωz are the world-frame
angular velocities. To train a Koopman model, we choose
delay basis functions with nd = 2, sampling time ts = 0.05,
planning horizon T = 15. To generate training data, we
simulate 5 training trajectories by propagating the dynamics
for 10 steps with random control, resulting in ND = 50.
We tested the approaches to navigate the quadrotor from
its initial hover position at (0, 0, 60) m to a target hover
position at (5, 5, 70) m. We define the operating regions as
follows: −10 ≤ xp, yp ≤ 10 and 10 ≤ zp ≤ 200.

Fig. 3 shows the resulting trajectories from RK-MPC
(proposed approach) and the nominal Koopman MPC. We
found that the proposed approach is able to driven the
quadrotor towards the target despite the limited amount of
data points (50 training points). We also found that the
nominal Koopman MPC fails to satisfy the state constraints
early on, possibly due to the modeling errors. Table I show
the computational effort for RK-MPC does not increase sub-
stantially when more complex, high-dimensional dynamics
are considered.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel robust Koopman model
predictive control approach, using Lipschitz analysis and
convex optimization. Our numerical simulations show that
the proposed approach is real-time implementable and ac-
commodates modeling errors arising in low-data regimes.

Our future work will investigate potential avenues to
further reduce the computational requirements as well as
the conservativeness. For example, we can further reduce



Fig. 4: Quadrotor control based on nominal Koopman MPC and the proposed RK-MPC. The proposed RK-MPC
conservatively maneuvers the quadrotor and reaches the goal, without any state constraint violation. On the other hand,
the nominal MPC fails to satisfy the state constraints.

the computational complexity in solving (18) by formulating
it as a quadratic program instead of the second-order cone
program after replacing the 2-norms with 1-norms in (15).
We can also reduce the conservativeness by considering
alternative heuristics for the selection of training points and
the surrogate uncertainty, including iterative procedures. We
will also compare the proposed approach with the recent
work in tube-based approaches [34].
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APPENDIX

A. Proof of Proposition 1
We need to show that ‖ε(Ψ, u) − ε(Ψtr, utr)‖ ≤ (Lf +

‖C[A B]‖)
∥∥∥∥[ Ψ−Ψtr

u− utr

]∥∥∥∥ for any two lifted-state-control

tuples (Ψ, u) and (Ψtr, utr). By the structure of ε, we have
‖ε(Ψ, u) − ε(Ψtr, utr)‖ = ‖εx(Ψ, u) − εx(Ψtr, v)‖, which
implies that the Lipschitz constants of ε and εx are identical.
We have

‖εx(Ψ, u)− εx(Ψtr, utr)‖
= ‖f(CΨ, u)− CAΨ− CBu− f(CΨtr, utr) + CAΨtr + CBv‖

≤ ‖f(CΨ, u)− f(CΨtr, v)‖+

∥∥∥∥C[A B]

[
Ψ−Ψtr

u− v

]∥∥∥∥
≤ Lf

∥∥∥∥[ C(Ψ−Ψtr)
u− v

]∥∥∥∥+ ‖C[A B]‖
∥∥∥∥[ Ψ−Ψtr

u− v

]∥∥∥∥
≤ (Lf + ‖C[A B]‖)

∥∥∥∥[ Ψ−Ψtr

u− v

]∥∥∥∥ . (21)

Here, we have used the triangle inequality,
Cauchy-Schwarz inequality and the observation that∥∥∥∥[ C(Ψ−Ψtr)

u− v

]∥∥∥∥ ≤ ∥∥∥∥[ Ψ−Ψtr

u− v

]∥∥∥∥.

B. Proof of Proposition 2
We need to show that for every Ψt ∈ Ball(Ψst, r), we

have Ψt+1 ∈ Ball(Ψst, r) under the control law u = K(Ψ−
Ψst) + ust and dynamics (2a) at all times t. By the stability
assumption of (Ψst, ust), we have

Ψst = f(Ψst, ust) = AΨst +Bust + ε(Ψst, ust). (22)

We obtain a bound on ‖Ψt+1 − Ψst‖ by considering the
application of uinv on the linear dynamics (2), Lipschitz
continuity of the modeling error ε, and Cauchy-Schwarz
inequality,

‖Ψt+1 −Ψst‖

=
∥∥∥(A(Ψt −Ψst) +B(uinv(Ψt)− ust)

+ ε(Ψt, u
inv(Ψt))− ε(Ψst, ust)

)∥∥∥
= ‖(A+BK)(Ψt −Ψst) + ε(Ψt, u

inv(Ψt))− ε(Ψst, ust))‖

≤ ‖(A+BK)(Ψt −Ψst)‖+ Lε

∥∥∥∥[ Ψt −Ψst

K(Ψt −Ψst)

]∥∥∥∥
= ‖(A+BK)(Ψt −Ψst)‖+ Lε

∥∥∥∥[IN 0
0 K

]
(Ψt −Ψst)

∥∥∥∥
≤

(
‖A+BK‖op + Lε

∥∥∥∥[IN 0
0 K

]∥∥∥∥
op

)∥∥Ψt −Ψst
∥∥ .

Recall that
∥∥∥∥[IN 0

0 K

]∥∥∥∥
op

≤ max
(
‖K‖op, 1

)
due to its

block diagonal structure. Since K satisfies (14), we conclude
that ‖Ψt+1 − Ψst‖ ≤ ‖Ψt − Ψst‖. Consequently, the set
Ball(Ψst, r) with any r > 0 is a control invariant set for the
Koopman model (2).

C. Proof of Proposition 3

We compute rmax by solving the following problem,

max. r
s. t. r ≥ 0,

uinv(Ψ) ∈ U , ∀Ψ ∈ Ball(Ψst, r),
CΨ ∈ SafeSet, ∀Ψ ∈ Ball(Ψst, r).

(23)

Using arguments similar to Chebyshev centering of poly-
topes [54], we obtain the following linear program in r by

max. r
s. t. r ≥ 0,

pi · (CΨst) + ‖C>pi‖r ≤ qi, ∀i ∈ N[1,NS ],
hi · ust + ‖K>hi‖r ≤ gi, ∀i ∈ N[1,NU ].

(24)

Since (24) is a linear program in a scalar variable, the optimal
solution of (24) is characterized by the active constraint. This
completes the proof.
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An Interdisciplinary J. Nonlin. Sci., vol. 22, no. 4, 2012.

[48] H. Arbabi and I. Mezic, “Ergodic theory, dynamic mode decomposi-
tion, and computation of spectral properties of the Koopman operator,”
J. App. Dyn. Syst., vol. 16, no. 4, pp. 2096–2126, 2017.

[49] M. Andersen, J. Dahl, L. Vandenberghe et al., “CVXOPT: A python
package for convex optimization.” [Online]. Available: cvxopt.org

[50] F. Djeumou, A. Vinod, E. Goubault, S. Putot, and U. Topcu, “On-the-
fly control of unknown smooth systems from limited data,” in Amer.
Ctrl. Conf., 2021, pp. 3656–3663.

[51] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. Schoellig,
“Learning to fly—a gym environment with pybullet physics for rein-
forcement learning of multi-agent quadcopter control,” in Int’l Conf.
Intelligent Rob. Syst., 2021.

[52] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” J. Machine Learn. Res., 2016.

[53] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for
embedded systems,” in Euro. Ctrl. Conf., 2013, pp. 3071–3076.

[54] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ.
Press, 2004.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-054.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


