
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Multi-Task Federated Learning for Traffic Prediction and Its
Application to Route Planning

Zeng, Tengchan; Guo, Jianlin; Kim, Kyeong Jin; Parsons, Kieran; Orlik, Philip V.; Di Cairano,
Stefano; Saad, Walid

TR2021-083 July 12, 2021

Abstract
A novel multi-task federated learning (FL) framework is proposed in this paper to optimize
the traffic prediction models without sharing the collected data among traffic stations. In
particular, a divisive hierarchical clustering is first introduced to partition the collected traffic
data at each station into different clusters. The FL is then implemented to collaboratively
train the learning model for each cluster of local data distributed across the stations. Using
the multi-task FL framework, the route planning is studied where the road map is modeled
as a time-dependent graph and a modified A* algorithm is used to determine the route with
the shortest traveling time. Simulation results showcase the prediction accuracy improvement
of the proposed multi-task FL framework over two baseline schemes. The simulation results
also show that, when using the multi-task FL framework in the route planning, an accurate
traveling time can be estimated and an effective route can be selected.

IEEE Intelligent Vehicles Symposium

c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Multi-Task Federated Learning for Traffic Prediction and Its Application
to Route Planning

Tengchan Zeng∗†, Jianlin Guo∗, Kyeong Jin Kim∗, Kieran Parsons∗, Philip Orlik∗,
Stefano Di Cairano∗, and Walid Saad†

∗Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, 02139 USA
Email:{guo, kkim, parsons, porlik, dicairano}@merl.com

†Wireless@VT, Electrical and Computer Engineering Department, Virginia Tech, Blacksburg, VA, 24061 USA
Emails:{tengchan, walids}@vt.edu

Abstract—A novel multi-task federated learning (FL) frame-
work is proposed in this paper to optimize the traffic prediction
models without sharing the collected data among traffic stations.
In particular, a divisive hierarchical clustering is first introduced
to partition the collected traffic data at each station into different
clusters. The FL is then implemented to collaboratively train the
learning model for each cluster of local data distributed across the
stations. Using the multi-task FL framework, the route planning
is studied where the road map is modeled as a time-dependent
graph and a modified A* algorithm is used to determine the route
with the shortest traveling time. Simulation results showcase the
prediction accuracy improvement of the proposed multi-task FL
framework over two baseline schemes. The simulation results also
show that, when using the multi-task FL framework in the route
planning, an accurate traveling time can be estimated and an
effective route can be selected.

Index Terms—Traffic prediction, multi-task federated learning,
data clustering, time-dependent graph, optimal route planning.

I. INTRODUCTION

To facilitate the development of intelligent transportation
systems (ITSs), it is imperative to have an accurate prediction
for the traffic conditions, such as traffic flow and speed. This
is due to the fact that, such knowledge can help drivers
make effective travel decisions so as to mitigate the traffic
congestion, increase the fuel efficiency, and alleviate the air
pollution. These promising benefits enable the traffic prediction
to play major roles in the advanced traveler information system,
the advanced traffic management system, and the commercial
vehicle operation that the ITSs target to achieve [1].

To reap all the aforementioned benefits, the traffic prediction
must process the real-time and historical traffic data collected
by traffic stations and mobile devices. For example, the in-
ductive loop can measure the traveling speed by reading the
inductance changes over time and such data can be used for
the traffic speed prediction. In addition, the wide use of mobile
devices (e.g., on-board global position systems and phones)
enables the mobility data to be crowdsourced from the gen-
eral public, further facilitating the unprecedented traffic data
collection. Such emerging big data can substantially augment
the data availability in terms of the coverage and fidelity and
significantly boost the research interest on the traffic prediction
[2]–[6].

The prior art on the traffic prediction can be mainly grouped
into two categories. The first category focus on using para-
metric approaches, such as autoregressive integrated moving
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average (ARIMA) model [2] and Kalman filtering models [3].
When dealing with the traffic only presenting regular variations
(e.g., recurrent traffic congestion occurred in morning and
evening rush hour), the parametric approaches can achieve
promising prediction results. However, due to the stochastic
and nonlinear nature of the road traffic, the traffic predictions
of using the parametric approaches can deviate from the actual
values especially in the abrupt traffic [4]. Hence, instead of
fitting the traffic data into a mathematical model as done
by the parametric approach, an alternative way is using the
nonparametric approaches where the machine learning (ML)
based method is the most popular [4]–[6]. For example, a
stacked autoencoder model is proposed to learn the generic
traffic flow features for the predictions in [4]. The authors in
[5] study the use of long short-term memory (LSTM) recurrent
neural network (RNN) to predict the traffic flow, speed and
occupancy, based on the data collected by the station and its
upstream and downstream traffic stations. Along with the use
of RNN, the work in [6] additionally utilizes the convolution
neural network (CNN) to capture the latent traffic evolution
patterns within the underlying road network.

Although the works in [4]–[6] focus on using advanced ML
models for the traffic prediction, all of them study the traffic
variations with a single-task learning (STL) model. However, in
reality, due to the varying weather, changing road conditions
(such as road work and accidents) and special events (e.g.,
football games and concerts), the traffic patterns on the road
can vary significantly under different situations. Hence, using
a STL model will be challenging to capture such diverse and
complex traffic situations. Moreover, due to the limited on-chip
memory available at the station, the local training data can be
extremely insufficient and a promising prediction performance
cannot be guaranteed. In addition, all these works assume
that the data collected by the traffic stations can be shared
with other stations or a centralized unit, like the traffic station
accessing the data from its upstream and downstream stations
in [5]. In reality, the collected data can contain the personal
information, like the driving license plates captured by cameras
and history trajectory of mobile phone users. In this case,
directly sharing the traffic data among stations can raise the
privacy issues. Meanwhile, the communication cost is another
major concern.

The main contributions of this paper can be summarized as
follows:



• We propose a novel multi-task federated learning (FL)
framework to optimize the traffic prediction models for
different traffic situations. In the framework, we first
make use of the spatial-temporal dependence of collected
traffic data and design a divisive hierarchical clustering
to partition the traffic data at each station into a group
of clusters. Then, for each data cluster distributed across
stations, the FL is used where the learning model for each
data cluster is collaboratively trained among all stations
without sharing the actual data. In this case, as no local
data is shared among stations, the proposed multi-task
FL framework can protect the privacy and reduce the
communication cost. The collaborative training process
can also address the insufficiency of local training data.

• We implement the multi-horizon speed prediction from
the multi-task FL framework into the route planning.
In particular, the road network is modeled as a time-
dependent graph and a modified A* algorithm is studied to
obtain the optimal route with the least traveling time. We
also design the interaction mechanism between the traffic
prediction and route planning to ensure the promising
route planning and traffic prediction under abrupt traffic
situations.

• Using real data traces from Caltrans Performance Mea-
surement System (PeMS), we validate the prediction ac-
curacy improvement of the proposed multi-task FL frame-
work over two baselines, i.e., single-task FL training and
traditional STL schemes, in multiple criteria. We highlight
the importance of performing a multi-task collaborative
learning framework in the traffic prediction.

• With real traffic data collected in San Jose area and Los
Angeles area and their road maps, we study the route
planning performance where the multi-horizon speed pre-
dictions from the proposed framework is used in the
modified A* algorithm. The simulation results show that,
we can achieve more accurate traveling time estimation
and route selection with less traveling time than Google
map like scheme that solely accounts for the current traffic
information and distance based scheme where no traffic
information is considered in the planning process.

II. SYSTEM MODEL

In this section, we introduce the basic multi-horizon traffic
speed prediction model and route planning problem.

A. Multi-horizon Traffic Speed Prediction Model

Consider a set N of N traffic stations where the station
can be the toll station, loop detector, and camera. To capture
the road traffic dynamics over time, station n ∈ N measures
the average speed xn(t) at time t for all vehicles traversed in
the past time interval ∆t (e.g., ∆t = 5 mins) and performs
the speed prediction. We assume the data sample used for the
prediction to be (xn(t+(1−l)∆t), xn(t+(2−l)∆t), ..., xn(t))
with lag variable as l when the station n ∈ N predicts the
future speed at time t. We also assume the multi-horizon speed

(a) Road map.
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Fig. 1. Traffic road map where the blue triangles, purple circles,
and red pentagram, respectively, refer to the traffic stations, the
vertices in the graph, and the traffic server.

prediction to be (x̂n(t + ∆t), x̂n(t + 2∆t), ..., x̂n(t + h∆t))
with x̂n(·) as the predicted speed value and h as the maximum
prediction time horizon.

To guarantee that the traffic station can make accurate speed
predictions, the stations use the local traffic data to train the
ML model and solve the following optimization problem:

arg min
w

∑Sn

i=1
f(w,xn,i,yn,i), (1)

where Sn is the total number of training samples within
the local data at station n ∈ N , xn,i = (xn,i(t + (1 −
l)∆t), xn,i(t + (2 − l)∆t), ..., xn,i(t)) is the i-th input data
sample, yn,i = (xn,i(t+∆t), xn,i(t+2∆t), ..., xn,i(t+h∆t))
is the i-th target output speed data, and f(w,xn,i,yn,i) is
the loss function when the ML model with model parameters
w is trained with data (xn,i,yn,i). The loss function plays
a pivotal role in determining the FL performance, and the
expression of the loss function is application specific. In the
traffic prediction, the most common loss function is the mean
squared error (MSE) [4].

For the purpose of traffic management, the stations will send
the speed predictions to the traffic server over either wired
network [7] or wireless network [8]. To avoid a large overhead
over the traffic server, the frequency that the stations share the
forecast results with the traffic server will be relatively low,
e.g., 1 hour. As follows, the traffic server can broadcast the
road map with traffic predictions to all the vehicles operating
within its coverage. The on-board unit (OBU) inside the vehicle
can then choose the optimal route from its current location
to the destination with the shortest traveling time. In this
next subsection, we will study how the vehicle determines the
optimal route.

B. Route Planning Problem

After receiving multi-horizon speed predictions from traffic
stations, the parameter server will first divide the long road
segments in the road network into multiple sub-segments such



that each road sub-segment is measured by a unique station.
For example, in Fig. 1(a), the road connecting intersection
vi and intersection vk has two traffic stations and therefore
such road can be separated into two sub-segments (vi, vj) and
(vj , vk) with vj as the connecting point. Then, the parameter
server will model the road network as a time-dependent graph
G = (V, E ,W), as shown in Fig 1(b). In particular, the set V of
vertices includes the intersections and connecting points of any
two adjoining road sub-segments, and the edge set E is thereby
the road sub-segments connecting two adjacent vertices. More-
over, the weight we(t) ∈ W of edge e ∈ E is modeled as the
traveling time at t, calculated as the ratio between the length
of the road sub-segment and the predicted speed. Note that,
different from the static graph where the weight associated to
each edge is a constant value, the counterpart within the graph
G is a time-varying variable due to the time-varying speed
(e.g., the piecewise linear speed in Fig. 1(c)) to traverse each
road sub-segment. Finally, the parameter server will broadcast
the time-dependent graph to all vehicles in its communication
range.

After receiving the time-dependent graph, the vehicle can
determine the route (v̄1 = s, ..., v̄i, v̄i+1, ..., v̄k = d) leaving
the current location s at time ts to the destination point d with
the least traveling time as follows:

arg min
(v̄1,...,v̄k)

td(s, ts)− ts, (2)

s.t. t1 = ts, (3)
ti+1 = ti + w(v̄i,v̄i+1)(ti), i ∈ {1, ..., k − 1}, (4)

where td(s, ts) denotes traveling time leaving location s at time
ts to destination location d. The first constraint is due to the
fact that the vehicle departures s at time ts and the second
constraint represents that the arrival time at v̄i+1 equals the
sum of the departure time at v̄i and the traversing time on
road sub-segment (v̄i, v̄i+1) at time ti. To obtain the optimal
route, we need to tackle two key challenges. The first challenge
is how to guarantee a high accuracy of multi-horizon traffic
speed prediction at traffic stations. The reason is that, due to
the limited on-chip memory available at the traffic stations,
the local training data can be insufficient. In fact, due to the
limited storage, only data pertaining to the most recent traffic,
such as the traffic of past few days, can be stored where the
data can be easily skewed and of poor quality. Thereby, the
learning model solely trained by local data cannot guarantee an
accurate speed prediction, leading to a possible failure to find
the optimal route. Once we have accurate traffic predictions,
we need to address the second challenge, i.e., determining the
solution to the optimization problem in (2). The reason is that,
different from the route planning problem in a static graph, the
optimization problem focuses on a time-dependent graph where
the weights are time-varying. In the following section, we
will propose a multi-task FL framework and study a modified
A* algorithm to address the aforementioned two challenges.
We will also study the interaction mechanism between the
multi-task FL framework and modified A* algorithm to further
improve the route planning performance.

III. MULTI-TASK FL FRAMEWORK FOR THE TRAFFIC
SPEED PREDICTION AND ROUTE PLANNING SOLUTION

To tackle the insufficient local training data and improve the
prediction accuracy, we propose a multi-task FL framework.
In particular, the stations will first use the divisive hierarchical
clustering to partition their local data into different clusters.
Then, the FL is used to collaboratively train the prediction
model designated to each data cluster among all traffic stations.

A. Multi-task FL Framework

First of all, to capture different traffic situations existing in
the collected traffic data, we use a divisive clustering method
to partition the local data at each station into a group of M
clusters, as shown in Fig. 2. This is motivated by the fact
that the traffic data collected by the stations can have a strong
spatial-temporal dependence where the same group of traffic
situations exist. The criteria of divisive clustering can include
the weather condition (e.g., rain, snow, and overcast), the time
(e.g., weekday, weekend, and rush-hour and non-rush-hour
traffic), and special events (e.g., concerts and football game).
In this case, each data cluster can represent a unique traffic
situation within the collected traffic data.

After the local data is grouped into different clusters, we can
train the prediction models. In particular, the objective of the
multi-task FL framework is to solve the following optimization
problem for each data cluster [9]:

arg min
wm∈R

Fm(wm), ∀ m ∈ {1, ...,M} (5)

with
Fm(wm)

4
=

1

S(m)

∑
n∈N

∑Sm,n

i=1
f(wm,xm,n,i,ym,n,i)

4
=

1

S(m)

∑
n∈N

Fm,n(wm), (6)

where (xm,n,i,ym,n,i) is the i-th training data sample belong-
ing to cluster m at station n with Sm,n as the total number
of such data samples. S(m)

4
=
∑

n∈N Sm,n refers to the total
number of training data samples belonging to cluster m across
all stations and Fm,n

4
=
∑Sm,n

i=1 f(wm,xm,n,i,ym,n,i) denotes
the loss function of cluster m at station n.

To solve (5), the FL framework will use an iterative update
scheme, as shown in Algorithm 1. In particular, the traffic
server, operating as the parameter server, will first generate an
initial global learning model with model parameters as wm,0

for cluster m ∈ {1, ...,M} which will be sent to the stations.
Then, at the first communication round, i.e., j = 1, all stations
will use the received model parameters to update the learning
models based on their own data of cluster m ∈ {1, ...,M} by
using the gradient descent:

wm,j,n = wm,j−1 + ηOFm,n(wm,j−1), n ∈ N , (7)
where η is the learning rate. As follows, the traffic stations will
transmit their trained model parameters to the traffic server
in the uplink. Next, the traffic server will aggregate all the
received local model parameters to update the global model
parameters, given by:

wm,j =
1

S(m)

∑
n∈N

Sm,nwm,j,n, (8)
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Fig. 2. Multi-task FL model for the traffic prediction.

Algorithm 1 Multi-task FL framework for the traffic speed
prediction.
Input: N , Sm,n, M , η, m ∈ {1, ...,M}, n ∈ N .
Output: Speed prediction model for each traffic situation.
1. According to the clustering criteria (e.g., weather conditions,
time, and special events), the divisive clustering method is used
to partition collected data at each traffic station into M data
clusters.
2. The traffic server generates the global learning model with
model parameters wm,0, for data cluster m ∈ {1, ...,M}.
for j = 0, ..., T − 1 do

(a) The traffic server sends wm,j ,m ∈ {1, ...,M}, to all
stations.
(b) Station n ∈ N trains the local learning models by using
the gradient descent in (7) on its data clusters and obtain
wm,j,n, which will be sent to the traffic server.
(c) The traffic server aggregates the model parameters
received from the stations and update the global learning
model parameters based on (8).

end

which are then sent to all traffic stations. Each communication
round will be followed by another round, and the same process
will repeat among the traffic server and the stations in each
round. In this case, as FL proceeds, the local and global
models are sequentially updated, and the total loss function
Fm(wm),m ∈ {1, ...,M}, for each cluster of local data will
constantly decrease [10]. Hence, when the stations perform
the speed prediction for any cluster of local data, the accuracy
can be guaranteed and their insufficiency of local training data
at traffic stations can be addressed. Moreover, the proposed
multi-task FL framework can protect the privacy and reduce
the communication cost as the stations do not share their large
raw data.

B. Solution to the Route Planning

When following any route in the time-dependent graph, we
assume an earlier departure will lead to an earlier arrival and a
later departure will result in a later arrival. In this case, to solve
the route planning problem in (2)–(4), we study a modified
A* searching algorithm, as presented in Algorithms 2 and 3.
Within the searching algorithm, the arrival time gv and the

Algorithm 2 Modified A* algorithm for the routing planing
Input: G = (V, E ,W), s, d, ts, hd.
Output: Route selection and estimated traveling time.
1. For vertex v ∈ {N/vs}, gv = inf, lv = inf; for vertex s,
gs = ts, ls = gs + hd(s).
2. Let Q be a priority queue containing pair (v, lv), ∀v ∈ V ,
ordered by lv in an ascending order.
3. Let P be a empty dictionary.
if Q is not an empty queue then

Dequeue Q and obtain the pair (v′, lv′) and gv′

if v′ = vd then
return OptimalRouteCalculation(P, v′) and gv′ ; break.

else
for Adjacent vertex v connecting to v′ with a road sub-
segment do

if gv ≥ gv′ + w(v′,v)(gv′) then
(a) gv = gv′ + w(v′,v)(gv′)
(b) lv = gv + hd(v)
(c) P [v] = v′

end
Update the queue Q.

else
break

heuristic total traveling time lv , v ∈ V , are initially set to
infinity with the exception of the starting point s with gs = ts
and ls = gs + hd(gs). Here, the heuristic total traveling time
is defined as the sum of arrival time and heuristic traveling
time hd to the destination. The heuristic traveling time hd to
the destination is calculated by the ratio between the Euclidean
distance to the destination and the maximum speed. Then, the
searching process in the modified A* algorithm begins with
the starting point s and extend to the adjacent vertices that
have adjoining road sub-segments with s. For these adjacent
vertices, their arrival time g will be updated by comparing the
most recently assigned arrival time with the arriving time when
taking the route from the starting point s. Meanwhile, their
heuristic total traveling time l will be updated as well. Next,
the vertex with the least heuristic total traveling time within the
neighboring vertices will be selected to continue the searching
process. The same process will be repeated. Finally, when
reaching the destination point d, the searching process will



Algorithm 3 OptimalRouteCalculation(P, v′)

Input: (P, v′)
Output: Route R
1. v̄ = v′, R = ∅
if P is not empty then

(a) Add v̄ into the R.
(b) v̄ = P (v̄)

else
break.

2. Reverse the order of R, and return R.

stop and return the optimal route selection and its traveling time
estimation. In contrast to the conventional Dijkstra’s algorithm,
the modified A* algorithm considers the heuristic distance
hd(v) that approximately measures the traveling time from
vertex v to the destination d. Such heuristic distance can restrict
the modified A* algorithm to search the nearby area around
the destination point d, reducing the searching time. Moreover,
different from the traditional A* searching algorithm mainly
studied in the static graph [11], the modified A* algorithm
explicitly considers the time-varying traffic speed and traveling
time in the time-dependent graph.

C. The Interactions between the Traffic Prediction and Route
Planning

As we see in Section III-B, the multi-horizon traffic speed
prediction from using the multi-task FL framework plays a
significant role in modeling the time-dependent graph and
solving the route planning. In fact, if it is designed properly, the
interaction mechanism between the traffic prediction and route
planning will in turn improve the traffic prediction accuracy. In
particular, since the traffic station can only measure the traffic
speed at a specific point whereas the road sub-segments can be
as long as few miles, the stations cannot immediately detect
the abrupt situations, like traffic accidents. Hence, the traffic
speed estimation will not be updated in time, leading to in-
accurate traveling time estimations and wrong route selections
for vehicles. However, the vehicles can easily identify such
abrupt situations by comparing the actual traffic speed and
their received estimation at the current locations. Based on
such fact, we design the interaction mechanism between the
traffic prediction and route planning to guarantee a promising
prediction accuracy and route planning solution under abrupt
traffic situations in Algorithm 4.

IV. SIMULATIONS

A. Simulation Data

To show the performance of the proposed multi-task FL
framework and the routing planning solution, we use the real
dataset collected by PeMS1. PeMS provides a consolidated
database of traffic data collected by traffic stations placed on
the state highways across California. In the simulation, we
consider the traffic data collected with time interval ∆t =
5 mins for two areas, i.e., San Jose area and Los Angeles

1http://pems.dot.ca.gov/

Algorithm 4 Interaction mechanism between the traffic pre-
diction and route planning
Input: Traffic speed prediction, traveling time estimation, and
route selection design
Output: Updated traffic speed prediction, traveling time esti-
mation, and route selection
1. All vehicles measure the difference between their speed
with their received speed predictions at current locations. If
the difference exceeds a threshold, the vehicles report the
unexpected traffic event to the traffic server.
2. The traffic server collects the unexpected traffic event report
from each vehicle and counts the number of reports for each
road sub-segment. If the number of reports passes a threshold,
the traffic server will request the traffic station to update the
traffic speed estimation and send the updated information to
the vehicles.
3. Vehicles will update traveling time estimation and route
selection based on the modified A* algorithm.

Table. I. Traffic speed prediction performance comparison of the
proposed multi-task FL framework with baseline schemes.

Performance criteria AMSE ARMSE AMAE AMAPE
Multi-task FL, short-term 1.537 1.186 0.737 1.431%
Single-task FL, short-term 2.114 1.401 0.894 1.771%

Traditional STL, short-term 47.872 6.438 4.015 10.855%
Multi-task FL, mid-term 8.179 2.695 1.378 2.945%
Single-task FL, mid-term 12.023 3.307 1.827 3.897%

Traditional STL, mid-term 66.700 7.632 5.079 13.108%
Multi-task FL, long-term 19.075 4.118 2.077 4.704%
Single-task FL, long-term 29.239 5.144 2.951 6.631%

Traditional STL, long-term 73.534 8.016 5.252 13.695%

area. For San Jose area, we choose 44 traffic stations where
each station measures the traffic movement for the highway
sub-segments. Similarly, we consider 573 stations for the Los
Angeles area. From PeMS, we use the traffic data of the first
week at January 2017 as the training data and the following
three days (one weekend-day and two weekdays) as the test
data. To implement the multi-task FL framework, the training
data is divided according to the collected time (i.e., weekday or
weekend) in the divisive hierarchical clustering. Without losing
of generality, we use two layers of LSTM as the learning model
for both data clusters where each layer has 64 neurons. We
use Tensorflow to train the learning model with learning rate
η = 0.001, mean squared error as the loss function, and adam
as the optimizer.

B. Multi-horizon Speed Prediction
In Table I, we show the the speed prediction accuracy for

three maximum prediction time horizons, i.e., the short term
(h = 1, i.e., 5 mins), mid-term (h = 6, i.e., 30 mins), and
long-term (h = 12, i.e., 60 mins) when using the proposed
multi-task FL, single-task FL, and traditional STL scheme for
San Jose traffic data. In particular, the single-task FL scheme
uses a single-task learning model (2 layers of LSTM) to predict
the weekday and weekend traffic where the learning model
is trained collaboratively among the stations. In contrast, the
traffic stations in the STL scheme train a single-task learning
model (2 layers of LSTM) based on their own data. The
performance criteria include the average mean squared error
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Fig. 3. Loss function change as the multi-task FL proceeds.

(AMSE), average root mean squared error (ARMSE), average
mean absolute error (AMAE), and average mean absolute
percentage error (AMAPE) as follows:

AMSE =
1

N

∑
n∈N

1

Sn

∑Sn

j=1

∑h

k=1
(δn,j,k)

2,

ARMSE =
1

N

∑
n∈N

√
1

Sn

∑Sn

j=1

∑h

k=1
(δn,j,k)2,

AMAE =
1

N

∑
n∈N

1

Sn

∑Sn

j=1

∑h

k=1
|δn,j,k|2,

AMAPE =
100%

N

∑
n∈N

1

Sn

∑Sn

j=1

∑h

k=1

∣∣∣∣ δn,j,k

yn,j,k

∣∣∣∣ ,
where δn,j,k

4
=yn,j,k− ŷn,j,k with yn,j,k and ŷn,j,k respectively

denoting the actual and predicted values in j-th output data
for station n at k-th prediction time horizon. As shown in
Table I, our proposed multi-task FL framework can improve
the prediction accuracy compared to other two baselines in
all three maximum prediction time horizons. In particular,
compared with the traditional STL scheme, its counterpart in
the FL can achieve a better traffic speed prediction, highlighting
the importance of performing the collaborative training for
the traffic prediction. More importantly, we can observe that,
our proposed FL multi-task learning framework can obtain
more accurate traffic speed predictions than the single-task FL
scheme, showing the necessity of using a multi-task learning
framework to further enhance the traffic speed prediction
performance.

Figures 3 and 4 show more details about the traffic speed
prediction performance of the multi-task FL framework. Fig. 3
shows the change of loss function for the weekday, weekend,
and all traffic (including both weekday and weekend training
data) in the training as the communication round increases un-
der different maximum prediction time horizons. In particular,
we can observe that, as the communication round increases,
the loss functions for all three types of traffic data decrease,
validating the effectiveness of the proposed multi-task FL
framework. Also, we can observer that, the loss function
corresponding to a smaller maximum prediction horizon is less

(a) Weekday traffic. (b) Weekend traffic.
Fig. 4. Traffic predictions and the true values.

(a) Route selection.
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(b) Predicted and actual traveling time
when using different schemes.

0 5 10 15 20
0

5

10

15

20

25

Time (hour)

T
ra

v
e

lin
g

 t
im

e
 a

b
s
o

lu
te

 d
if
fe

re
n

c
e

 (
m

in
s
)

 

 
Modified A* + multi−task FL
Google map like scheme
Distance based scheme

.
(c) Absolute difference between the ac-
tual and predicted traveling time.

Fig. 5. Route planning results and traveling time comparisons
of San Jose area.

than the one for a larger maximum prediction horizon. This
can be explained that, with a larger prediction horizon, we
need to predict a longer traffic speed series and the traffic in a
further future. Such expansion on the prediction horizon will
inevitably degrade the prediction performance. Moreover, in
Fig. 4, we present the short-term speed prediction for weekday
and weekend traffic of two randomly selected traffic stations in
San Jose area when using the proposed multi-FL framework.
As we can observed, the prediction results are close to the
actual speed in both rush-hour and non-rush-hour traffic in
the weekday of Fig. 4(a) and clear traffic in the weekend of
Fig. 4(b). It can validate that our multi-task FL framework can
effectively capture the diverse traffic patterns in both weekend
and weekday.

C. Route Planning

In Figures 5 and 6, we use the traffic speed predictions from
the multi-task FL framework in the route planning problem of
San Jose area and Los Angeles area, respectively. In particular,
we compare the traveling time estimation and route selection
of the modified A* algorithm using multi-horizon speed pre-
dictions from the multi-task FL framework with two baselines.
The first baseline is the Google map like scheme where the
route selection and traveling time estimation are determined



(a) Route selections of the modified A* algorithm
when using the multi-horizon prediction (Black,
green, purple, and blue routes are, respectively,
selected at 12 AM, 7 AM, 5 PM, and 7 PM. The
black route is also selected by Google map like
and distance based schemes at 5 PM.
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(b) Predicted and actual traveling time
when using different schemes.
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(c) Actual traveling time difference be-
tween baseline and proposed scheme.

Fig. 6. Route planning results and route selection comparisons
of Los Angeles area.

based on the road map and the current traffic information. The
second baseline is the distance based scheme which will always
choose the route with the shortest distance without considering
the traffic information on the road. In Fig. 5, we compare the
traveling time estimation performance of all three schemes in
San Jose area. To this end, we choose the start point as A and
destination point as B in a way that the routes selected by all
three schemes are the same throughout the whole day, as shown
in Fig. 5(a). In Fig. 5(b), we show the traveling time estimations
and actual values for all three schemes in a whole day. As
observed from Fig. 5(b), since all three schemes will always
choose the same route, their actual traveling time will be the
same. However, when using the modified A* algorithm with the
multi-horizon traffic speed prediction, the predicted traveling
time is much closer to the actual value than other two baselines,
verified by the absolute difference in Fig. 5(c). Hence, for the
route planning, the multi-horizon traffic prediction obtained by
using the proposed multi-task FL can improve the traveling
time estimation.

In Fig. 6, we consider the Los Angeles area and select
two points A and B so that the route selection for these
schemes will vary over time and across different schemes. For
example, Fig. 6(a) shows that, when using multi-horizon traffic
predictions, the route selected by the modified A* algorithm
is the purple route at 5 PM; whereas both Google map like
and distance based schemes choose the black route. Moreover,
in Fig. 6(b), we show that the traveling time estimations and
actual values for all three schemes. To compare the routes
selected by all three algorithm, in Fig. 6(c), we show the
actual traveling time difference between each baseline scheme
and the modified A* algorithm with the multi-horizon speed
prediction. As we observed from Fig. 6(c), the traveling time of

routes selected by Google map like and distance based schemes
always exceed the one for the route chosen by the modified A*
algorithm. In other words, when using the multi-horizon traffic
prediction from the modified A* algorithm, we can obtain an
effective route selection with less traveling time than Google
map like and distance based schemes.

V. CONCLUSIONS

In this paper, we have developed a novel multi-task FL
framework for the traffic prediction and have used the frame-
work in solving the real-world problem, i.e., route planning.
In particular, to capture the diverse traffic situations, we
have used a divisive hierarchical clustering to partition the
collected traffic data at each station into different clusters.
Then, to address the insufficiency of local training data, we
have integrated FL to collaboratively train each cluster of local
data distributed among the stations. We have used the multi-
horizon traffic speed prediction from the proposed multi-task
FL model to address the route planning that effectively utilizes
a modified A* algorithm. Simulation results have verified the
prediction accuracy improvement by the proposed multi-task
FL framework. Also, the simulation results have demonstrated
that, by using the predictions of the proposed multi-task FL
model, the effective route selection and accurate traveling time
estimation can be achieved. As the future extension, we can
implement the proposed multi-task FL framework to predict
other traffic conditions, like traffic flow, and tackle other real-
world problems, such as best departure time to minimize the
traveling time.
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