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Abstract
This paper considers localization with 28-GHz millimeter wave (mmWave) channel measure-
ments in an outdoor environment. Compared with mmWave channel characterization by
real-world experiments, localization using real-world 28-GHz experiments has been much less
reported. To fill the gap, we report here a preliminary field study of using real-world 28-
GHz channel frequency responses (CFR) with a wide bandwidth of 500 MHz for outdoor
localization. Specifically, we employ a fingerprinting-based localization approach by register-
ing the location information using multiple wideband CFR measurements and exploring the
transmit-receive antenna polarization. Our experimental results demonstrate that, with a full
bandwidth of 500 MHz, a correlation-based fingerprinting localization can fully identify all 8
locations with a 1-m separation without any error. The probability of successful localization
reduces to 97% or 91.5%, respectively, when two or just one narrowband (< 15 MHz) CFR
measurements are used for the training dataset.
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Abstract—This paper considers localization with 28-GHz mil-
limeter wave (mmWave) channel measurements in an outdoor
environment. Compared with mmWave channel characterization
by real-world experiments, localization using real-world 28-GHz
experiments has been much less reported. To fill the gap, we
report here a preliminary field study of using real-world 28-
GHz channel frequency responses (CFR) with a wide bandwidth
of 500 MHz for outdoor localization. Specifically, we employ a
fingerprinting-based localization approach by registering the lo-
cation information using multiple wideband CFR measurements
and exploring the transmit-receive antenna polarization. Our
experimental results demonstrate that, with a full bandwidth
of 500 MHz, a correlation-based fingerprinting localization can
fully identify all 8 locations with a 1-m separation without any
error. The probability of successful localization reduces to 97%
or 91.5%, respectively, when two or just one narrowband (< 15
MHz) CFR measurements are used for the training dataset.

I. INTRODUCTION

Leveraging a large number of antennas and RF chains to
support many single-/multiple-antenna users at high-frequency
millimeter wave (mmWave) bands, next-generation (5G) base
stations and WiFi can significantly increase the spectral effi-
ciency and provide high spatial beamforming resolution [1],
[2]. More specifically, it can mitigate propagation loss by
exploiting large array gain due to coherent beamforming/
combining, reduce interference-leakage as channel estimation
errors vanish asymptotically in the large-dimensional vector
space, simplify signal processing algorithms, and reduce inter-
user interference with high beamforming resolution.

Despite all these benefits, new challenges exist for system
design and hardware implementation. For example, hardware
cost and power consumption become prohibitively high when
the number of RF chains is large and high-resolution analog-
to-digital converters (ADCs) are employed. To meet these
challenges, several transceiver architectures have been pro-
posed. One is a hybrid analog/digital architecture that can
reduce the number of RF chains by combining subarrays of
antennas with switches, phase shifters and lenses, followed
by digital sampling of the combined signals [3]–[5]. With
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more degrees of freedom, a hybrid precoder can support
multi-stream transmission, while keeping the system cost,
complexity, and power consumption low. Another one is a
fully digital architecture with low-resolution ADCs [6], [7].

While the majority of 5G research activities are dedicated
to data communication, the exploration of upcoming 5G
mmWave signals for localization has received rising attention
over the past few years. The mmWave localization may be
more technically and commercially appealing when miniature
5G infrastructures are massively deployed in both indoor
and outdoor environments hence seamless indoor and outdoor
localization becomes more feasible for connected cars, robots,
drones, and other mobile users. Its applications in Internet of
Things (IoT), machine-to-machine (M2M) communications in
factory automation, and smart buildings (logistics and smart
mobility) are also highly anticipated.

The advantages of mmWave signals for localization come
from the fact that a higher temporal resolution can be achieved
due to the larger bandwidth, higher spatial directivity [8]–[10],
and limited scattering [11]. In [12], Shahmansoori et. al pro-
posed a three-stage position and orientation estimation method
based on generated mmWave signals. A direct localization
technique for massive MIMO based on AoA and TOA was
proposed in [13]. It considered both line-of-sight (LOS) and
non-line-of-sight (NLOS) impacts. Furthermore, Lin et. al in-
vestigated 3-D indoor mmWave localization using a large-scale
uniform cylindrical array [14]. They reduced the reflection and
scattering components with channel compression techniques.

In terms of the localization algorithms, fingerprinting and
triangulation are two dominant techniques for RF-based lo-
calization systems. The former approach exploits location-
specific signatures of each position. Typically, it involves
two stages. In the first stage, a data collection of each
location is required, the data then will be stored for future
comparison with the second phase where the online data is
collected. Earlier efforts have investigated the performance of
fingerprinting-based techniques using received signal strength
indicator (RSSI) [15] and full channel state information (CSI)
at sub-6 GHz bands [16], [17]. On the other hand, triangulation
utilizes the geometric property by pinpointing the location of
interest with triangle calculations.



Compared with existing efforts on the mmWave outdoor
localization using synthetic data, this paper introduces the
first step of a series of real-world field studies using 28-
GHz mmWave signals for both indoor and outdoor local-
ization applications. Here we report our analysis results for
an outdoor environment applying the fingerprinting approach
with wideband channel frequency response (CFR) measure-
ments as location-specific signatures. Our experimental results
demonstrate that, with a full bandwidth of 500 MHz, a
correlation-based fingerprinting localization can fully identify
all 8 locations with a 1-m separation without any error. The
probability of successful localization reduces to 97% or 91.5%,
respectively, when two or just one narrowband (< 15 MHz)
CFR measurements are used for the training dataset.

The remainder of the paper is organized as follows. In
Section II, we introduce a correlation-based fingerprinting
location algorithm by using the CFR measurements. Section
III discusses the 28-GHz mmWave measurement system. Sec-
tion IV describes the creation of training and test datasets.
Performance evaluation is shown in Section V followed by
Conclusions.

II. LOCALIZATION USING MMWAVE INFRASTRUCTURE

In this section, we introduce the correlation-based finger-
printing localization algorithm which was used extensively
in indoor localization. In Section V, we will also use it to
analyze our 28-GHz channel measurements in an outdoor
environment. Since we collect the channel state information
(CSI) or, equivalently, channel frequency response (CFR), the
CFR is used as location-specific fingerprints.

Given two CFR vectors h and h′, the normalized cross
correlation criterion computes

γCFR(h,h′) =
|hHh′|2

‖h‖2‖h(′)‖2
, (1)

where (·)H denotes the Hermitian (complex transpose) opera-
tor and ‖ · ‖2 is the `2 norma of a vector. Here, we define the
CFR vector over multiple dimensions. In practice, the collected
CFR can be a function of (frequency) subcarriers, transmit-
receive polarization, transmitting beams, et al. This results in a
multi-dimensional CFR datacube. To compute the normalized
cross-correlation, we first vectorize the multi-dimensional CFR
datacube into corresponding CFR vectors and then feed the
vectors into (1).

For the correlation-based fingerprinting localization, one
usually collects the training dataset at a set of known locations.
This preliminary research collects a total of training dataset
for L locations-of-interest. For a given location, R ≥ 1
realizations of CFR measurements (usually taken at a different
time) are stored. Overall, we have a training dataset of R×L
CFRs for L known locations.

When new CFR measurements h̃ from an unknown location
are available, the problem of localization can be cast into an
multi-hypothesis testing problem as follows

l̂ = arg max
r=1,··· ,R
l=1,··· ,L

γCFR(h(r)(l), h̃). (2)

Fig. 1. A multi-beam transmitter supported by 4 sets of 2 × 2 rectangular
horn antennas at 28 GHz.

Fig. 2. Each set of 2 × 2 horn antennas is switched in time for data
transmission.

For a candidate location, we first compute the cross correlation
γCFR between each of the R realizations h(r)(l) and the new
CFR measurement h̃. Then, for that candidate location, the
largest one from the R cross correlation values (in other
words, identify the most similar fingerprint feature from R
realizations) is saved. We iterate the above computation over
all L candidate locations and declare the location as the one
giving the maximum cross-correlation value.

In practice, an additional step of comparing the maximum
cross-correlation value with a pre-determined threshold is
implemented to efficiently reduce the probability of false
alarm. This is equivalent to expanding the multi-hypothesis
testing problem of (2) by adding a null hypothesis H0

γl = arg max
r=1,··· ,R

γCFR(h(r)(l), h̃) (3)

l̂ =

{
arg maxl=1,··· ,L γl, if maxl=1,··· ,L γl ≥ Γ

excluded from L locations, otherwise

where Γ is a proper threshold to be selected for a given
probability of false alarm. In our experiment, we only imple-
ment the multi-hypothesis testing of (2) since the new CFR
measurement h̃ is always taken from one of L locations in the
fingerprinting dataset.

III. EXPERIMENT SETTING

To collect the 28-GHz channel measurement, probing sig-
nals are generated using a vector signal generator with a wide
carrier frequency range. The carrier frequency was set to 27.89
GHz and the bandwidth is 500 MHz. The generated signal
is amplified before feeding into horn antennas for channel
sounding. At the receiver side, a broadband digital processing
receiver is used to obtain the I/Q channel measurement for
subsequent data analysis.



Fig. 3. The system architecture for the receiver side.

A. Transmitter Architecture

The transmitter side consists of 4 sets of 2×2 horn antennas
to simulate a multi-stream hybrid beamforming, as shown in
Fig. 1. The combined lateral length of the left two (#1 and
#2) or right two sets (#3 and #4) is 0.42 m with a window
beam in the middle. This setting is used to form 4 azimuth
beams at 4 directions at {−9◦,−3◦, 3◦, 9◦}, respectively.

Within each set, the 2× 2 horn antennas are arranged in an
X shape to excite 2 polarization directions at +45◦ and −45◦,
respectively. They are separated with a horizontal and vertical
distance of 9.3λ, where λ denotes the corresponding wave-
length. To enable data transmission from each horn antenna,
we used an RF switcher to connect the signal generator to
one horn antenna at a time. Fig. 2 shows the RF architecture
with an RF switcher (RFSW). For the calibration purpose, one
additional horn antenna is used. Each individual horn antenna
has an antenna gain of 24 dBi with a one-side 3-dB beamwidth
of 6◦, as shown in the right plot of Fig. 2. The effective
isotropic radiated power (EIRP) is 39.3 dBm. Overall, this
architecture simulates a 16-stream (4×4) multiplexing scheme
with 4 streams pointing at the same azimuth direction with
different polarizations.

The probing signal is generated by a signal generator as
a chirp signal with a bandwidth of 500 MHz at the center
frequency of 27.89 GHz. Specifically, a triangular (up/down)
sweeping pattern is used for the chirp generation. Each chirp
duration (burst length) is about 11.1 µs with a coherent
processing interval (burst interval) of 13.3 µs.

B. Receiver Architecture

At the receiver side, the system architecture is shown in
Fig. 3. Polarized patch antennas are used to receive the
transmitted signal. Then the received signal passes through a
low noise amplifier (LNA) before the digital sampling. After
the digitalization, we can obtain channel measurements at 6400
subcarriers with a subcarrier interval of 75 kHz around the
center frequency of 27.89 GHz. The pair of patch antennas is
arranged vertically with a polarization direction at +45◦ at the
top and the other at −45◦ at the bottom. For both polarization
directions, the azimuth beampattern is relatively flat to cover
wide azimuthal angles, as shown in Fig. 4. Even though they
are not visually distinct, the cross-polar discrimination (XPD)
is about 10 dB.

(a) (b)

Fig. 4. Patch antenna beampatterns for a) +45◦ polarization at the left; and
b) −45◦ polarization at the right.

Fig. 5. Experiment setting for an outdoor environment.

C. Experiment Settings

The data collection was conducted in an outdoor environ-
ment with a common road outside a building. The transmitter
is placed through a window at the building with a height of
5.9 m above the road level. The receiver is placed around the
dashed area at the outer lane of the road. The ground-level
distance between the transmitter and receiver is about 14.6 m.
We moved the receiver station to 8 different locations (labeled
from #a to #h as shown in Fig. 5) with a separation of 1 m.
For each location, we only recorded one-snapshot the channel
measurement corresponding to 16 transmitting horn antennas
and 4 receiving patch antennas.

IV. CREATING TRAINING AND TEST DATASETS

In real-world experiments, collected measurements may be
scarce due to resource limitations. In our experiment, only
one-realization channel measurement was recorded for each
location. As a result, we cannot have both training and test
datasets. In other words, we need at least 2 realizations for
each location, one for the training dataset and one for the test
dataset, to analyze the fingerprinting-based localization perfor-
mance. To overcome this challenge, we explore the transmit-
receive polarization to create multiple virtual realizations for
a given location and then split these virtual realizations into
the training and test datasets.

By numbering the transmit horn antennas and receive
patch antennas in Fig. 6, we can have 16 transmit-receive
polarization pairs for one location. From these 16 pairs, we
observed that certain pairs show similar CFR patterns due
to their transmit-receive polarization. For instance, the upper
left plot of Fig. 7 shows four CFR curves corresponding



Fig. 6. Exploring transmit-receive polarizations to create multiple virtual
realizations for each location.

to four polarization pairs: {1, 1}, {1, 3}, {4, 1} and {4, 3}
where the first number denotes the horn antenna index and
the second number is the patch antenna index. It is noted that
the four CFR curves are similar to each other, up to a shift of
frequency dips (or, equivalently, a delay in the time domain).
This observation aligns well with the physical implications
of the transmit-receive polarization in Fig. 6. That is, the
horn antennas 1 and 4 have the same transmitting polarization
at −45◦, while the patch antennas 1 and 3 share the same
receiving polarization at +45◦. As a result, we can treat the
4 CFR measurements from the four polarization pairs as 4
virtual realizations for the same location. In other words, we
can treat these four CFR measurements taken from one fixed
transmit-receive antenna pair at four different time instants.

Similarly, we can find other transmit-receive polarization
pairs sharing similar CFR measurements. Therefore, for a
given location l, we can divide the one-realization experimen-
tal measurement into M virtual realizations. Specifically, we
create M = 4 realizations by splitting similar transmit-receive
polarization pairs into different realizations. One choice is
listed as follows:

Realization 1: {1, 1}, {2, 1}, {1, 2}, {2, 2},
Realization 2: {4, 1}, {3, 1}, {4, 2}, {3, 2},
Realization 3: {1, 3}, {2, 3}, {1, 4}, {2, 4},
Realization 4: {4, 3}, {3, 3}, {4, 4}, {3, 4}. (4)

Other choices are possible by permutations of similar transmit-
receive pairs into different realizations. Once we fix the choice
of realizations, we apply the same rule to all L locations to
create M realizations for all locations. To further explore the
difference in traveling distances, we may have M = 8 virtual
realizations for the fingerprinting dataset.

With a total of virtual L×M realizations, we can allocate R
realizations into the training dataset and M−R realizations to
the test dataset for each location. This allocation will be used
to evaluate the fingerprinting-based localization performance.

V. PERFORMANCE EVALUATION

In this section, we present our results for the fingerprinting-
based mmWave localization system. As mentioned in the
above section, the one-realization measurement is divided
into either M = 4 or M = 8 virtual realizations for the
fingerprinting dataset.

Fig. 7. Channel frequency responses for 16 transmit-receive polarization pairs.
The first number in the bracket denotes the transmit horn antenna while the
second number denotes the receive patch antenna.

(a) (b)

Fig. 8. Confusion matrices for a) M = 4 realizations and b) M = 8
realizations.

We first assess the separation distance between different
locations l and different realizations r. For this purpose, we
use the confusion matrix defined as

C(i, j) = γCFR(h(r1)(l1),h(r2)(l2)) (5)

where i = (l1 − 1) × L + rl, j = (l2 − 1) × L + r2, and
γCFR(·, ·) denotes the normalized cross correlation of (1). With
M = 4, Fig. 8 (a) shows the computed confusion matrix
over L = 8 locations and M = 4 realizations which yields a
32×32 matrix. It is easy to notice its dominant block-diagonal
structure with a size of 4 × 4. These 4 × 4 diagonal blocks
essentially imply strong similarities among the R = 4 virtual
realizations we created from the transmit-receive polarization
pairs. Moreover, small off-diagonal blocks of the confusion
matrix exhibit these fingerprinting dataset preserves well the
location-specific features. With M = 8, Fig. 8 (b) shows
the confusion matrix for all L = 8 locations and M = 8
realizations. One can still notice the block-diagonal structure
but it is less dominant than the M = 4 counterpart.

Next we split the M virtual realizations for each location
into R realizations for training and (M − R) for testing. A
localization is considered to be successful if the correlation-
based fingerprinting scheme declares the true location (out
of L = 8 locations). Then the probability of successful



Fig. 9. Probability of successful localizations as a function of subcarriers.

localization is defined as the ratio of the number of successful
localization to the total number of tests.

Fig. 9 shows the probability of successful localization as a
function of the number of subcarriers when, out of M = 4
virtual realizations, a) only R = 1 realization is used for
training dataset at each location (black curves); b) R = 2
realizations are used for training dataset at each location (red
curves); and 3) R = 3 realizations are used for training
dataset at each location (blue curves). With more realizations
in the training dataset, e.g., R = 3, the localization accuracy
reaches to 100%, even with only two subcarriers. The accuracy
decreases slightly when we use fewer realizations (smaller
R) in the training set. Nevertheless, the accuracy can still
reach 100% when all subcarriers are used for localization. The
lowest probabilities of successful localization are around 97%
for R = 2 and, respectively, 91.5% for R = 1 when the
number of subcarriers is small.

Fig. 10 shows the probability of successful localization as
a function of the number of subcarriers when we have M = 8
realizations. Similar to the case of M = 4, the performance
improves as the number of subcarriers increases. The best
probability of successful localization of 97% is attained with
all 6400 subcarriers when R = 3. The best performance drops
to 95% for R = 2 and around 85% for R = 1. Comparison
between Fig. 10 and Fig. 9 shows that the choice of M = 4
of (4) yields better localization performance.

VI. CONCLUSIONS

Our outdoor experiment and data analysis demonstrated
that, with a full transmit aperture and an effective bandwidth
of 500 MHz, a simple correlation-based fingerprinting local-
ization scheme can successfully identify all 8 locations with
a 1-m separation without localization error. This preliminary
analysis drives us to use a 28-GHz phased-array testbed (such
as Mitsubishi Electric’s hybrid phased-array RF module) for
further data collection in various scenarios.
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