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Abstract
Parameter estimation of damped exponential signals has wide applications including fault
detection and system parameter identification, etc. However, existing methods for estimating
parameters of damped exponentials are either sensitive to noise or restricted to dealing with
a certain type of noise such as Gaussian noise. In this paper we aim to estimate parameters
of damped exponentials from contaminated signal, i.e., a mixture of damped exponentials,
random Gaussian noise, and spike interference. We propose two robust approaches, a convex
one solved by the alternating direction method of multipliers (ADMM) and a non-convex one
solved by coordinate descent, to recovering a low-rank Hankel matrix of damped exponentials
from noisy measurements for further parameter estimation using the matrix pencil technique.
Numerical experiments show that our proposed methods outperform classical ones in detect-
ing small damped fault signatures from noisy measurements. While the convex approach
is amenable to theoretical analysis and global convergence guarantees, the non-convex one
exhibits more robustness and computational efficiency
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ABSTRACT

Parameter estimation of damped exponential signals has wide ap-
plications including fault detection and system parameter identifi-
cation, etc. However, existing methods for estimating parameters
of damped exponentials are either sensitive to noise or restricted to
dealing with a certain type of noise such as Gaussian noise. In this
paper we aim to estimate parameters of damped exponentials from
contaminated signal, i.e., a mixture of damped exponentials, random
Gaussian noise, and spike interference. We propose two robust ap-
proaches, a convex one solved by the alternating direction method
of multipliers (ADMM) and a non-convex one solved by coordinate
descent, to recovering a low-rank Hankel matrix of damped expo-
nentials from noisy measurements for further parameter estimation
using the matrix pencil technique. Numerical experiments show that
our proposed methods outperform classical ones in detecting small
damped fault signatures from noisy measurements. While the con-
vex approach is amenable to theoretical analysis and global conver-
gence guarantees, the non-convex one exhibits more robustness and
computational efficiency.

Index Terms— Signal decomposition, parameter estimation,
damped exponential, matrix pencil, fault detection

1. INTRODUCTION

The model of damped exponentials occurs naturally in a wide range
of applications including fault detection [1,2], structural health mon-
itoring [3], and system identification [4], etc.

1.1. Parameter Estimation of Damped Exponentials

Mathematically, the system observes a time-domain signal

y(t) =

M∑
j=1

Aje
αjtei(2πfjt+θj) + η(t) (1)

where y(t) is composed of M damped exponentials but contami-
nated by noise η(t). Parameters Aj > 0, αj ≤ 0, fj > 0 and
θj ∈ R represent the corresponding amplitude, the damping coeffi-
cient,the frequency, and the phase of the jth(j = 1, ...,M) damped
exponential component, respectively. In many practical applications,
e.g., signal analysis of electric circuits [5] and fault detection of in-
duction machines [6], these parameters as well as the number M are
typically unknown and to be identified for either analyzing the sys-
tem status or evaluating the machine fault severity, etc. Furthermore,
the noise η(t) may include not only white Gaussian noise but also
spike interference, which is caused by external interference such as
switching operations or internal defects such as mechanical faults.
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Therefore, it is of great interest to identify damped exponentials as
well as spikes from contaminated measurements.

The goal of this paper is to provide robust solutions to decom-
pose a mixture signal of damped exponentials, spikes, and random
Gaussian noise, and further to estimate all unknown parameters of
the exponentials.

1.2. Related Work

Parameter estimation of damped exponentials has been extensively
studied in the noiseless setting [7, 8]. Well-established methods for
solving this problem include Prony’s method [9, 10], which con-
tains a polynomial root-finding operation, and the matrix pencil
method [11], which forms a matrix pencil based on the input signal
and solves a generalized eigenvalue problem. According to [12, 13],
the matrix pencil method is computationally more efficient and
has better statistical properties compared to the Prony’s method.
However, both methods are very sensitive to noise.

To combat noise, data pre-processing methods based on singular
value decomposition (SVD) have been proposed for the matrix pen-
cil method, and demonstrated very effective for Gaussian noise [8,
14]. For example, the total-least square matrix pencil (TMP) [8]
truncates the singular values of a Hankel matrix constructed from the
noisy observation. The underlying principle is that the true noise-
free Hankel matrix of damped exponentials is low-rank [15, 16].
However, in the presence of ubiquitous spike interference [5, 17], a
few grossly corrupted entries severely affect the result of SVD [18],
resulting poor performance in parameter estimation. Although one
may use robust principle component analysis (RPCA) [18] to effec-
tively extract a low-rank matrix despite of spike interference, this
low-rank matrix typically cannot preserve the Hankel structure re-
quired for further parameter estimation.

In this paper, we propose two robust approaches, i.e., a con-
vex one which we refer to as Convex Robust Parameter Estimation
(CRPE) and a non-convex one which we refer to as Non-convex
Robust Parameter Estimation (NRPE). Both methods take into con-
sideration the low-rank property and the structure of Hankel matri-
ces, as well as the sparse property of spike interference. We solve
the former problem using the alternating direction method of mul-
tipliers (ADMM) [19], and the latter one using coordinate descent.
By solving these problems, we can robustly decompose the Han-
kel matrix constructed from the noisy observations into a low-rank
noise-free Hankel matrix of damped exponentials, a sparse matrix
of spike interference, and a residual matrix of Gaussian noise. It is
then straightforward to estimate parameters of damped exponentials
from the recovered low-rank Hankel matrix by applying the classi-
cal matrix pencil algorithm [8,11]. Our numerical experiments show
that both approaches outperform classical ones in recovering small
fault signatures, at similar computational cost. While the convex-
ity of CRPE makes it amenable to theoretical analysis and global



convergence guarantees, NRPE exhibits better robustness and com-
putational efficiency.

Our paper is organized as follows. In Section 2 we propose two
approaches to decomposing the Hankel matrix of noisy measure-
ments. We then develop two optimization algorithms respectively
in Section 3. Details of our numerical experiments are described in
Section 4 with conclusion drawn in Section 5.

2. CONVEX AND NON-CONVEX ROBUST PARAMETER
ESTIMATION

Without loss of generality, we define a Hankel matrix Hp(x) ∈
C(N−p)×(p+1) of a sampled signal x ∈ CN as

Hp(x) =


x(1) x(2) ... x(p+ 1)

x(2) x(3) ... x(p+ 2)

...
...

...
x(N − p) x(N − p+ 1) ... x(N)

 .

If the sampled signal x ∈ CN is a sum of M(M << N) damped
exponentials, by choosing p ∈ [M,N − M ], the Hankel matrix
is proved to be a rank M(M ≤ p) matrix [15, 16], or a low-rank
matrix ifM << p. In the noiseless case, the matrix pencil algorithm
exploits this low-rank property to accurately estimate parameters of
the exponentials by eigen analysis. Following this idea, in this paper
we aim to extract such a low-rank Hankel matrix, Hp(x), where
x is the estimated sum of damped exponentials, using the Hankel
matrix of noisy observation Y = Hp(y) ∈ C(N−p)×(p+1), where
y ∈ CN is the sampled noisy observation. Since p is fixed during
the optimization process, we simplify the notation of Hankel matrix
as H(x) by dropping the subscript p.

2.1. CRPE Optimization Problem

Inspired by the success of the robust principal component analy-
sis [18] and the blind signal decomposition work in the compres-
sive sensing community [20–22], we formulate the Hankel matrix
demixing problem as a convex optimization problem

min
x,S

1

2
||Y −H(x)− S||22 + λ1||H(x)||∗ + λ2||S||1, (2)

where we apply the nuclear norm || · ||∗ to relax the low-rank con-
straint on H(x), use the `1 norm to impose sparsity on matrix S
caused by spike interference, and assume the residual is Gaussian
noise.

2.2. NRPE Optimization Problem

Alternatively, we can also perform a non-convex optimization by
replacing the nuclear norm regularization in (2) with an explicit con-
straint on the rank of H(x) as follows

min
x,S

1

2
||Y −H(x)− S||22 + λ2||S||1, s.t. Rank(H(x)) ≤ r,

(3)
where r denotes the maximum number of damped exponentials we
expect to recover. In practice, r can be set according to an initial es-
timate of r or a prior knowledge based on the nature of the practical
application. The main advantage of this non-convex method is that
the constraint on rank is more intuitive and relatively easier to set
than the convex one in (2). However, due to its non-convexity, the
optimization algorithm could get trapped in local minima.

Algorithm 1 Solving CRPE via ADMM

Input: y, λ1, λ2, p, µ, tol, MaxIter
1: Initialization: Y = Hp(y), x0 = 0, S0 = Z0 = V0 = 0,
Loss0 = 0

2: for k = 0, 1 · · · , MaxIter do
3: Update x:
4: xk+1 = 1

1+µ
RevDM(Y − Sk + µZk −Vk)

5: Update Z:
6: Zk+1 = Dλ1µ−1

(
Hp(xk+1) + µ−1Vk

)
7: Update S:
8: Sk+1 = Sλ2 (Y −Hp(xk+1))
9: Update V:

10: Vk+1 = Vk + µ[Hp(xk+1)− Zk+1]
11: Calculate the Loss:
12: Lossk+1 = fCRPE(xk+1,Sk+1)
13:
14: if |Lossk+1 − Lossk|/|Lossk+1| ≤ tol then
15: Break
Output: xk+1, Sk+1

3. OPTIMIZATION ALGORITHM

3.1. ADMM for CRPE

To solve the CRPE optimization problem (2), we introduce an aux-
iliary variable Z with constraint Z = H(x). Then the augmented
Lagrangian function of (2) can be expressed as

Lµ(x,S,Z,V) =
1

2
||Y −H(x)− S||22 + λ1||Z||∗

+ λ2||S||1 + 〈H(x)− Z,V〉R +
µ

2
||H(x)− Z||22,

where V ∈ C(N−p)×(p+1) is the Lagrange multiplier matrix, µ
is the penalty parameter associated with the augmented term, and
〈A,B〉R = Re(Tr(BHA)). The update steps of ADMM [19]
are summarized in Algorithm 1, where the symbols are explained
as follows. The Reverse Diagonal Mean operator (RevDM :

C(N−p)×(p+1) 7−→ CN ) is defined as

RevDM(A) =



A(1, 1)
1
2
[A(2, 1) +A(1, 2)]

1
3
[A(3, 1) +A(2, 2) +A(1, 3)]

...
A(N − p, p+ 1)


,

for A ∈ C(N−p)×(p+1) and A(i, j) is the entry of A in the ith

row and jth column. Sτ (A) = sign(A)max{|A| − τ, 0} is the
complex element-wise soft thresholding operator with threshold τ
[23], where sign(A) = A/|A| for the non-zero entry and 0 other-
wise. max{·, ·} is the element-wise maximum operator. Moreover,
Dν(A) = U diag(max{σ − ν, 0})WH is the singular value soft
thresholding operator [19] with threshold ν, where the singular value
decomposition of A = U diag(σ)WH . fCRPE is the objective
function of the CRPE optimization problem defined in (2).

3.2. Coordinate Descent for NRPE

We solve the NRPE optimization problem (3) by coordinate descent
with projection. The details of this solver are summarized in Al-
gorithm 2, where Tr(A) is the singular value truncation operator,



Algorithm 2 Solving NRPE via coordinate descent

Input: y, λ2, p, r, tol, MaxIter
1: Initialization: Y = Hp(y), x0 = x̂0 = 0, S0 = L0 = 0,
Loss0 = 0

2: for k = 0, 1 · · · , MaxIter do
3: Update x̂:
4: x̂k+1 = RevDM(Y − Sk)
5: Project Hp(x̂k+1) onto the low-rank space:
6: Lk+1 = Tr(Hp(x̂k+1))
7: Update x by projecting Lk+1 onto the Hankel space:
8: xk+1 = RevDM(Lk+1)
9: Update S:

10: Sk+1 = Sλ2 (Y −Hp(xk+1))
11: Calculate the Loss:
12: Lossk+1 = fNRPE(xk+1,Sk+1)
13:
14: if |Lossk+1 − Lossk|/|Lossk+1| ≤ tol then
15: Break
Output: xk+1, Sk+1,Lk+1

which implements the singular value decomposition on the input ma-
trix A and returns the matrix constructed using A’s r largest singular
values. fNRPE is the objective function of the NRPE optimization
problem in (3).

4. NUMERICAL EXPERIMENTS

4.1. Robust Parameter Estimation in Fault Detection

In the first experiment, we consider the bearing fault detection prob-
lem of induction machines [6], where the machine current includes
a 60Hz operating signal and a 90Hz sideband wave related to its ro-
tational frequency component in the presence of Gaussian noise and
spike interference. When a bearing fault or defect occurs, a damped
frequency component in the current will be generated with parame-
ters related to the fault location and the bearing size. For example, in
our case a 73Hz frequency component is caused by the cage defect
of an outer ring. The magnitude of this defect frequency compo-
nent is typically very small compared to the 60Hz operating current
signal, making bearing fault detection a very challenging problem.
Still, its parameters, and sometimes the spike interference, are useful
to evaluate the fault severity and operating condition of the machine.

To evaluate our approaches in this application, we simulate a
noisy fault observation as follows

y(t) =e0t1.0 cos(2π · 60t+ 1.3) + e−4.2t0.1 cos(2π · 73t+ 0.2)

+ e−1.3t0.3 cos(2π · 90t+ 1.7) + g(t) + s(t).

We collect 1 second of current signal y with N = 1000 samples.
The signal to Gaussian noise g(t) ratio is 25 dB and spike interfer-
ence s(t) has 1% cardinality whose non-zero entries are randomly
selected with magnitudes uniformly sampled in [0.5, 1.5], as shown
in Fig. 1 (a). By fixing p = 167 ≈ (N/6), λ1 = 4, and µ = 10
for CRPE, r = 10 for NRPE, and fine tuning λ2, we obtain the
demixing results of CRPE and NRPE recorded in Fig. 1 (b) and (c).
We observe that both CRPE and NRPE can demix y into the sum
of damped exponentials, Gaussian noise, and spikes accurately. The
consequent parameter estimation results are shown in Fig. 2. For
comparison, we also plot the results of RPCA [18] and TMP [8],
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(a) The demixing ground truth.
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(b) The demixing result of CRPE.
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(c) The demixing result of NRPE.

Fig. 1: The demixing results of CRPE and NRPE methods.

where the objective function of RPCA is

min
X,S
||X||∗ + λ||S||1, s.t. X+ S = Y, (4)

with λ selected based on [18]. From Fig. 2 we note that all the pa-
rameters are precisely recovered by CRPE and NRPE except that
the damping coefficient α of the fault signature component is a little
smaller than the ground truth. Although RPCA and TMP also suc-
ceed in recovering the parameters of 60Hz and 90Hz components,
both methods fail to identify the fault signature component for de-
tection purpose.

To further investigate the performance of different approaches
under different noise conditions, we generate noisy observations us-
ing the same exponentials as the first experiment but with only 25dB
random Gaussian noise or 1% cardinality spike interference whose
magnitudes are uniformly sampled in [1, 3]. Results are recorded in
Figs. 3 and 4 respectively. We observe that both CRPE and NRPE
recover all exponentials and related parameters accurately, no matter
with only Gaussian noise or with only spike interference, exhibiting
robust performance. In both cases, the relative error of any estimated
parameter with respect to the ground truth is less than 7.1%. In con-
trast, RPCA failed to identify the weak exponential with the exis-
tence of Gaussian noise, because RPCA is not capable of preserving
the Hankel structure when recovering a low rank matrix. TMP failed
in the spike interference case because those grossly corrupted non-
Gaussian entries distort the result of SVD, the most critical operation
in TMP.

As regarding to computational time, it takes 2.5 seconds and
0.7 second for CRPE and NRPE, respectively, to finish parameter
estimation on an i7-6700 CPU, comparable to 2.0 seconds and 0.1
second for RPCA and TMP, respectively.

4.2. The Effect of Sparse Constraint

To examine the effect of hyper-parameter λ2 which controls the
sparse constraint, we randomly generate a mixture of 6 complex
damped exponentials of N = 300 samples in 0.3 second, with
their frequencies, magnitudes, phases, and damping coefficients
uniformly random chosen in [60, 180] with 10Hz separation, [1, 2],
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(b) Estimation using CRPE.
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(c) Estimation using NRPE.

0 50 100 150 200
Frequency (Hz)

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

:  0.0
:  1.3

: -1.2
:  1.8

(d) Estimation using
RPCA [18].
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(e) Estimation using
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Fig. 2: Comparison of frequency spectra using different methods. α denotes the damping coefficient and θ denotes the phase.
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Fig. 3: Estimation results with random Gaussian noise only.
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Fig. 4: Estimation results with spike interference only.

[1, 2], and [−5,−1] respectively. The signal to complex Gaussian
noise ratio is 30dB and the complex spike interference has 10%
cardinality and for each spike the real and imaginary parts are uni-
formly sampled in [−1, 1]. Fixing p = 50, λ1 = 1, and µ = 10 for
CRPE, and r = 10 for NRPE, we record in Fig. 5 (a) the average
relative error of damped exponentials ||x̃−x0||2

||x0||2
(over 100 trials) ver-

sus different values of λ2, where x̃ is the estimated sum of damped
exponentials and x0 is the ground-truth. We also record the recovery
success rate of parameters, as depicted in Fig. 5 (b), where a success
is counted when the difference between the estimated frequency and
the corresponding ground-truth is smaller than 1Hz and at the same
time the relative errors of all other associated parameters are no
larger than 15%. We observe that to achieve the same success rate,
the NRPE method has a much wider range of λ2 for selection than
CRPE does, meaning much less sensitive to the adjustment of λ2.

4.3. The Effect of Low-rank Constraint

We run the same experiment but with fixed λ2 = 0.095 for CRPE
and λ2 = 10−3 for NRPE based on Fig. 5 and varying λ1 and r for
CRPE and NRPE respectively. The relative error of the damped ex-
ponentials and the recovery success rate of the exponentials param-
eters are recorded in Fig. 6. To achieve above 90% recovery success
rate, λ1 should be set within [0.8, 1.7] for CRPE and r can be set
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(b) The recovery success rate.

Fig. 5: Effect of the sparse constraint for CRPE and NRPE.

in the range of [6, 30] for NRPE. Note that 6 is the true number of
exponentials. Similarly, we can observe that NRPE is less sensitive
to the adjustment of its hyper-parameter of the low-rank constraint
than CRPE in terms of the relative range of parameters.

0.6 0.9 1.2 1.5 1.8 2.1

1

0.02

0.04

0.06

R
el

at
iv

e 
er

ro
r 

(c
irc

le
)

0.6

0.7

0.8

0.9

1
S

uc
ce

ss
 r

at
e 

(s
qu

ar
e)

(a) The CRPE method.
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Fig. 6: Effect of the low-rank constraint for CRPE and NRPE.

5. CONCLUSION

In this paper, we propose two novel approaches, named CRPE
and NRPE, to decomposing damped exponentials contaminated by
Gaussian noise and spike interference, considering the low-rank
property of the Hankel matrix as well as the sparsity of spike in-
terference. Numerical experiments demonstrate that our proposed
approaches outperform classical ones in detecting small fault sig-
natures, exhibiting robust performance in different noise situations.
While the CRPE method is amenable to theoretical analysis and
global convergence guarantees, the NRPE method is less sensitive
to hyper-parameters and computationally more efficient.
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