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Abstract
State-of-the-art base stations can be equipped with a massively large number of antenna
elements, often several hundreds of elements, thanks to the rapid advancement of wideband
radio-frequency (RF) analog circuits and compact antenna design techniques. With massive
antenna systems, a relatively large number of users can be served at the same time by means
of analog and digital beamforming and spatial multiplexing. We investigate such a large-
scale multi-user multipleinput multiple-output (MU-MIMO) wireless system employing an
orthogonal frequency-division multiplexing (OFDM)-based downlink transmission scheme.
The use of OFDM causes a high peak-to-average power ratio (PAPR), which usually calls
for expensive and power-inefficient RF components at the base station. In this paper, we
propose a nullspace vector perturbation (VP) which integrates both nonlinear lattice and
linear subspace precoding approaches. By exploiting high degrees of freedom available in
massive MU-MIMO OFDM systems, the signal PAPR can be significantly reduced with the
proposed method. We also introduce a Gaussian process (GP) regression approach to be
robust against the imperfect channel knowledge, which is required for the VP operation,
in time-varying fading channels. Our analysis of outage capacity reveals that the proposed
VP with GP regression offers a significant improvement in sum-rate spectral efficiency while
reducing the PAPR.
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Abstract—State-of-the-art base stations can be equipped with
a massively large number of antenna elements, often several
hundreds of elements, thanks to the rapid advancement of
wideband radio-frequency (RF) analog circuits and compact
antenna design techniques. With massive antenna systems, a
relatively large number of users can be served at the same time
by means of analog and digital beamforming and spatial mul-
tiplexing. We investigate such a large-scale multi-user multiple-
input multiple-output (MU-MIMO) wireless system employing
an orthogonal frequency-division multiplexing (OFDM)-based
downlink transmission scheme. The use of OFDM causes a
high peak-to-average power ratio (PAPR), which usually calls
for expensive and power-inefficient RF components at the base
station. In this paper, we propose a nullspace vector perturbation
(VP) which integrates both nonlinear lattice and linear subspace
precoding approaches. By exploiting high degrees of freedom
available in massive MU-MIMO OFDM systems, the signal PAPR
can be significantly reduced with the proposed method. We
also introduce a Gaussian process (GP) regression approach to
be robust against the imperfect channel knowledge, which is
required for the VP operation, in time-varying fading channels.
Our analysis of outage capacity reveals that the proposed VP
with GP regression offers a significant improvement in sum-rate
spectral efficiency while reducing the PAPR.

I. INTRODUCTION

The recent hardware technologies have enabled the deploy-
ment of very large-scale antenna arrays, so-called massive
multiple-input multiple-output (MIMO) wireless systems [1]–
[5]. Such large-scale antenna arrays have a potential to accom-
modate ever-growing mobile data traffic for the coming fifth-
generation (5G) networks. For multi-user (MU) scenarios, a
large number of antennas at the base station (BS) would serve
a large number of users concurrently in the same frequency
band by means of analog and digital beamforming techniques.
In particular for high carrier frequencies including millimeter
waves (mmWave), high beam gain achieved by the massive-
antenna BS is of great importance to combat severe propa-
gation loss. To realize practical massive MU-MIMO systems,
various configurations have been investigated, e.g., fully digital
and digital-analog hybrid subarrays [3]–[5]. While the fully
digital configuration yields excellent transmission performance
utilizing a large number of degrees of freedom (DoF), the
implementation and computational costs can be significantly
high. Hence, the digital-analog hybrid configurations have
been discussed for the most 5G systems to provide a better
tradeoff between the cost and performance.

Most typical massive MU-MIMO systems have much larger
number of BS antennas than the number of concurrent users,

e.g., hundreds of antennas serving tens of users. Such a large-
scale MIMO system can exploit sufficient DoF to suppress
inter-user interference (IUI). As one of the simplest ways for
IUI mitigation, a zero-forcing (ZF) method [6] has been used
to nullify the IUI in prior to transmission by employing a
pseudo inverse of the channel matrix. The ZF-based precoding
can be slightly improved by using generalized minimum mean-
square error (MMSE) precoding in particular when the channel
state information (CSI) is imperfectly known at the transmitter
(Tx). Those linear precoding methods have been generalized
to a block diagonalization (BD) method [7]–[9], which can
exploit eigen-beam gains by relaxing the nullspace projection
to accept intra-user interference when the user equipment (UE)
also have multiple antennas to receive multiple data streams.
The BD precoding has been further extended to a block trian-
gularization (BT) [10] and multi-block diagonalization (MBD)
[11], which can improve the diversity gain by increasing the
available DoF via an additional nonlinear precoding based on
Tomlinson–Harashima precoding (THP) [12]–[15] to cancel
residual IUI. Furthermore, a generalized variant of THP has
been also investigated as a lattice precoding (LP) or vector
perturbation (VP) for MU-MIMO wireless systems [16], [17].

The nonlinear VP precoding relies on the principle that
an addition of any arbitrary vector on lattice points can be
self-canceled through the use of a simple modulo operation.
In fact, the VP is useful not only for IUI cancellation but
also for reducing a peak-to-average power ratio (PAPR) as
discussed in [18]–[21]. The PAPR has been one of major
problems in digital communications to implement power-
efficient radio-frequency (RF) components, particularly when
orthogonal frequency-division multiplexing (OFDM) is used
to combat frequency-selective fading. Although the OFDM
is an efficient and well-established method in the modern
communications systems, it is known to suffer from a high
PAPR, which necessitates the use of high-cost and high-power
linear RF components to prevent out-of-band radiation and
signal distortions. Therefore, it is of importance to reduce
the PAPR for OFDM-based large-scale MU-MIMO systems
to facilitate low-cost and low-power BS deployment.

The PAPR reduction for OFDM signals has been investi-
gated based on various other methods, e.g., selected mapping
(SM) [23], [24], partial transmit sequence (PTS) [25], active
constellation extension (ACE) [26], [27], and tone reservation
(TR) [28], [29]. In [22], a simple linear subspace precoding
was proposed for MU-MIMO OFDM systems, where we can



exploit the excessive DoF underlying the massive antennas
in comparison to the number of serving users. It was shown
that the convex optimization of subspace precoding offers
significant reduction of PAPR without sacrificing IUI penalty,
when compared to the conventional PAPR reduction methods,
i.e., SM, PTS, ACE, and TR.

In this paper, we investigate the joint use of nonlinear lattice
precoding [18]–[21] and linear subspace precoding [22] to
reduce the PAPR while suppressing the IUI for a massive
MU-MIMO OFDM system. The proposed precoding method
involves relatively intensive signal processing only at the BS
having massive antennas while keeping the low-complexity
UE operations. Although the hybrid use of linear and nonlinear
precoding has been well studied for IUI cancellation, there are
few investigation in terms of PAPR reduction for massive MU-
MIMO systems to be best of authors’ knowledge.

Our contributions can be summarized as follows:
• We investigate the joint use of nonlinear lattice precoding

and linear nullspace precoding to reduce the PAPR for
large-scale MU-MIMO OFDM systems.

• We develop an alternating optimization algorithm, which
successively designs the lattice perturbation vector and
nullspace perturbation vector in an iterative fashion.

• We introduce the Gaussian process (GP) regression [31]
to be robust against the CSI knowledge imperfection. The
regression confidence value is exploited to modify the
precoding matrix.

• We also consider a low-complexity subspace tracking
method [30] to adapt the precoding matrix over the GP-
predicted time-varying fading channels.

• We present numerical simulation results to demonstrate
the capabilities of the proposed MU-MIMO OFDM
downlink transmission scheme.

Throughout the paper, boldface uppercase letters denote
matrices and boldface lowercase letters denote vectors. An
operator [·]T denotes transpose and [·]† complex-conjugation,
i.e., Hermitian. Unless otherwise specified, all vectors are
assumed to be column vectors. We use Zq , Cn×m, and E[·] to
respectively denote the set of non-negative integers less than
q, the set of complex-valued matrices of size n×m, and the
expectation operation. The Lp-norm of a vector x is expressed
as ‖x‖p. We denote 0 and I as all-zero matrix and identity
matrix, respectively, with a proper dimension.

II. MASSIVE MULTI-USER MIMO SYSTEMS

A. System Description

Fig. 1 depicts the MU-MIMO wireless downlink systems
having massive antenna elements at the BS to serve multiple
UEs concurrently. For example, the BS having Nt = 1024
antenna elements is configured with digital-analog hybrid
arrays constituting of digitally-controlled dual-polarization
(4 × 8)-dimensional subarrays, each of which further imple-
ments Na = 4 × 4 analog-controlled antenna elements (thus,
2×4×8×4×4 = 1024). Most typically, the analog-controlled
subarray antennas use a bulk phase shifting for beam staring
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Fig. 1. Massive MU-MIMO downlink systems having Nt = 1024 antenna
elements (e.g., 2 polarization, 32 subarrays, and 16 elements) for serving
Nu = 8 UEs having Nr = 2 antenna elements each.

towards a target UE, and hence relatively high side-lobe
interference occurs towards the other UEs. The remaining
Nd = Nt/Na antennas, which are digitally-controlled, can
deal with the residual IUI more precisely in real time.

Consider serving Nu concurrent UEs, equipped with Nr

receiving (Rx) antennas each. We assume much more DoF is
available for digital-controlled antennas than the total number
of Rx antennas; specifically, Nd � NuNr. For example in
Fig. 1, the total number of Rx antennas are 16 for Nu = 8
UEs with Nr = 2 elements, whereas the number of digital
Tx antennas is Nd = 64 for the BS with dual-polarized 32
subarrays. For such a case, we can utilize the excessive DoF
(i.e., Nd −NuNr) to manipulate the transmission signal, e.g.,
such that the PAPR is minimized as studied in [22].

B. Signal Model

Let xk ∈ CNr be the Tx modulated streams vector for the
kth UE, at a certain subcarrier (subcarrier index is omitted
for convenience throughout the paper). We consider 256-
ary quadrature-amplitude modulation (QAM) format for the
constellation of xk as an example. The data streams xk are fed
into RF components to transmit through massive subarrays via
a linear precoding matrix Bk ∈ CNd×Nr as follows: Bkxk.
Correspondingly, the BS carriers out a spatial multiplexing
for all data streams x = [x1,x2, . . . ,xNu ]

T, through the
Nd subarrays, using a compound linear precoding matrix
B = [B1,B2, . . . ,BNu

] ∈ CNd×NuNr . Accordingly, the
transmission signal vector u ∈ CNd across the BS subarrays
is expressed as follows:

u =

Nu∑
k=1

Bkxk = Bx. (1)

Note that the time-domain Tx sequence is obtained by
taking an inverse Fourier transform across all subcarriers,
denoted as F−1[u] for convenience. We suppose that the peak
envelope shall not surpass a predefined power truncation limit,
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Fig. 2. Linear BD, BT, BBD precoding for MU-MIMO systems.

such that the infinity norm lies under a threshold with a high
probability as follows:∥∥F−1[u]∥∥2∞ ≤ Eth, (2)

where Eth denotes the peak power limitation. To prevent
nonlinear distortion due to a low-cost power amplifier under
the peak power limitation, the average power of Tx signal is
also constrained within a backoff margin as

E
[∥∥F−1[u]∥∥2

2

]
≤ τEth, (3)

where τ is a constant value determining the backoff (typically
a few dB less than peak power).

The multiplexed data streams u are propagated after Na-
element analog beamforming towards a receiver UE through
wireless fading channels. At the kth UE, the Rx baseband
signal is modeled as follows:

yk =Hku+ zk =

Nu∑
j=1

HkBjxj + zk, (4)

where yk ∈ CNr is the Rx signal vector, Hk ∈ CNr×Nd

denotes the subcarrier channel matrix, and zk ∈ CNr is the
additive white Gaussian noise (AWGN) vector following the
complex Gaussian distribution of CN (0, σ2I) with a noise
variance of σ2. Note that handling cyclic prefix (CP) and
Fourier transform are assumed appropriately.

C. Block-Diagonalization (BD) Precoding

As shown in (4), the Rx signal at the kth UE may contain
undesired signals xj , sent for the other users j 6= k. The main
purpose employing the linear precoding B is to suppress such
an IUI. To do so, we perform a block-wise diagonalization
[7]–[9] for the compound channel matrix H ∈ CNuNr×Nd

such that

HB =


H1

H2

...
HNu

B =


G1 0

G2

. . .
0 GNu

 , (5)

where Gk ∈ CNr×Nr is an effective channel matrix after pre-
coding for the kth UE. This BD precoding enforces nullifying
all off-diagonal blocks to avoid IUI at the other UEs, i.e.,
HkBj = 0 for k 6= j, as shown in Fig. 2(a). This constraint
can often lead to a limited diversity gain in particular when the
excessive antenna DoF is small. The use of MMSE can relax
the constraint by accepting small IUI leakage comparable to
a noise level at off-diagonal blocks.

m=2 m=1 m=0m=3

THP

LP

L

-L

Fig. 3. Modulo operation for THP and its generalization with LP/VP.

In order to drastically increase the DoF, some relaxed
variants including BT [10] and block bi-diagonalization (BBD)
[11] allow IUI at partial off-diagonal blocks as shown in
Figs. 2(b) and (c). The admitted IUI are then canceled by
introducing a nonlinear lattice precoding, which is based on
THP [12]–[15] or more generally VP [16], [17]. Nevertheless,
the BD and BBD precoding are advantageous over the BD only
for the case when there is a limited antenna DoF. In this paper,
we consider a sufficiently large number of antenna elements
(e.g., Nd = 64 for Nu = 8 and Nr = 2, thus having 4-times
more DoF), and therefore will focus on the BD precoding for
the IUI suppression.

Note that there are usually more than a unique solution of
B which can nullify off-diagonal blocks. In order to achieve
the highest eigen-beam gain, the effective channel matrix
Gk should have the identity matrix for its right singular
matrix after precoding. More practically, once we obtained
Gk after a particular block diagonalization process, we should
multiply the right singular matrix from the right of precoding
matrix Bk. Specifically, with a singular-value decomposition
of Gk = SkV kD

†
k, the BD precoding matrix Bk shall be

replaced with BkDk.

III. JOINT LATTICE & SUBSPACE VP

A. Nonlinear Lattice VP

Even without IUI by using the BP precoding, the VP
technique is still useful for reducing the PAPR. Because of
the central limit theorem, OFDM signals multiplexing QAM
constellations over a number of subcarriers tend to follow the
Gaussian distribution, resulting into a significantly high PAPR
in general. The high PAPR in turn necessitates high-power and
high-cost RF components for all the massive antenna subarrays
in MU-MIMO systems.

The lattice VP uses a modulo operation, MΛ[x] = x −
2Λbx/2Λe, where Λ is a modulo constant and bxc denotes
the rounding operation returning the closest integer to x. This
modulo operator used for the conventional THP limits the
amplitude within Λ, as shown in Fig. 3. The VP uses a
transparency feature through the modulo operation even after
modifying the signal x by adding 2mΛ asMΛ[x+2mΛ] = x
for any auxiliary integer m ∈ Z.

At the BS, we can modify the OFDM signal xk by adding
any arbitrary lattice vector λk, whose element is a product of
2Λ and a certain integer (specifically, complex-valued square
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Fig. 4. Joint lattice and subspace vector perturbation for MU-MIMO.

grid). Assuming that IUI is nullified by the BD precoding, the
kth Rx signal in (4) is rewritten with lattice vector perturbation
λk as follows:

yk = Gk(xk + λk) + zk. (6)

The desired signal xk can be easily retrieved at the Rx by
employing the modulo operation asMΛ[G

−1
k yk] even without

knowledge of lattice perturbation vector λk. The auxiliary
vector addition provides a great opportunity to manipulate the
precoded OFDM signals u such that the PAPR is minimized.
As we will discuss later, we use a simplified version of the
p-sphere encoder [19] to obtain optimized lattice perturbation
vector λk.

B. Linear Nullspace VP

When there is an excessive DoF, any subspace projection
on kernel can be auto-canceled over the MIMO channels. Let
H⊥ ∈ CNd×Ne be the nullspace projection matrix of the
channel matrix H such that HH⊥ = 0, where Ne is the
excess DoF which is at most Nd −NuNr. Consequently, we
can further modify the precoded OFDM signal u in (1) by
adding any arbitrary perturbation vector w ∈ CNe over the
nullspace projection as follows:

u = B(x+ λ) +H⊥w, (7)

as the nullspace vector w is automatically canceled:

y =Hu+ z

=HB(x+ λ) +HH⊥w︸ ︷︷ ︸
0

+z

=HB(x+ λ) + z. (8)

Because of the transparency, the subspace VP can modify
the Tx signal statistics without disturbing the Rx detection.
The subspace perturbation vector w which reduces the PAPR
can be obtained by a gradient descent method based on fast
iterative truncation algorithm (FITRA) [22]. In this paper,
we investigate a joint use of nonlinear lattice VP and linear
nullspace VP, whose schematic is illustrated in Fig. 4.

C. Alternating Minimization for PAPR Reduction

For the joint vector & subspace VP, we need to optimize the
two perturbation vectors λ and w given a channel realization

H and transmitting data streams x as well as the BD precod-
ing B. Under the constraint of average Tx power in (3), we
wish to minimize the peak power in (2), or simply

min
λ,w,B

∥∥∥F−1[B(x+ λ) +H⊥w
]∥∥∥2
∞
. (9)

However, minimizing PAPR does not always improve the sum-
rate spectral efficiency because the desired signal term of
Bx can be less power if too much energy are assigned for
those perturbation vectors. To simply the problem, we impose
another constraint such that the desired signal power cannot
be lower than a threshold as

E
[∥∥F−1[Bx]∥∥2

2

]
≥ βτEth, (10)

where β is a power allocation factor no greater than 1.
We use an alternating minimization method, which succes-

sively determines the best vectors λ and w to minimize the
peak power while keeping the other power constraints in an
iterative fashion. To find the best lattice vector λ given the
nullspace vector w, we employ the p-sphere encoder [19] with
a few number of survivors to minimize the infinity norm of u
according to (2). Then the Tx power is scaled to satisfy the
constraints of (3) and (10). We next use the FITRA algorithm
[22] to find the nullspace vectorw (implicitly, via u to provide
the minimum infinity norm) given the lattice vector λ. Note
that the precoding constraint in the original FITRA should
be replaced from the ZF precoding to the BD precoding as
follows:

Hu = G(x+ λ), (11)

in other words, the precoded channel matrix G = HB
is no longer identity. Since the individual steps are well-
established for the lattice VP and nullspace VP in the other
literature, the iteration process is rather straightforward with
minor modifications.

D. Computational Complexity

We briefly discuss the computational complexity of the
proposed joint nonlinear and linear VP. The p-sphere encoder
[19] tries to minimize the L∞-norm in (10) subject to the
L2-norm bound in (3) so that PAPR is reduced given x
and w. In order to constrain the computational complexity
low, we employ the M-algorithm where the constant number
of surviving candidates is retained to search small L2-norm.
Since the Fourier transform is invariant under L2-norm, we can
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independently perform the sphere decoding for each subcarrier.
For each subcarrier, we employ the quadrature-residue (QR)
factorization for the precoder matrix B so that efficient tree-
based M-algorithm is feasible. The computational complexity
for the QR decomposition is in the order of O[N3

dNs] where
Ns denotes the number of subcarrier tones. The M-algorithm
having M survivors requires O[MNsNd] complexity to search
for small L2-norm candidates. Among the best M survivors,
we then determines the PAPR minimizing solution which
offers the smallest L∞-to-L2 norm ratio, which requires
O[MNdNs(1+log2Ns)] complexity due to the inverse Fourier
transform.

Given the optimized lattice vector λ, the FITRA [22]
updates the subspace vector w via an iterative gradient and
truncation process based on a proximal map. The gradient
computation requires the Fourier transform of complexity
order O[NdNs log2Ns] to convert back and forth between
frequency and time representations of precoded signal u in
(7). In addition, each subcarrier needs channel projections of
complexity order O[NsN

2
r N

2
uN

2
d ] in total. The proximal map

uses an element-wise truncation of the complexity order of
O[NsNd].

E. Precoder Adaptation over Time-Varying Fading Channels

Supposed that the VP vectors can be perfectly canceled, the
spectral efficiency is upper-bounded by

R = log2 det
[
I +

1

σ2
HBB†H†

]
=

Nu∑
k=1

Nr∑
i=1

log2

(
1 +

v2k,i
σ2

)
, (12)

where vk,i is the ith singular value of Gk, which depends on
the power allocation factor β. One major challenge of the VP
technique lies in the requirement of accurate CSI feedback
from the Rx UEs to the Tx BS before applying the BD
precoding and VP. When the imperfect CSI is provided, the
undesired IUI can considerably degrade the spectral efficiency
as residual IUI plays an effectively colored noise source.

The CSI imperfection can be more serious when pilots tones
are sparsely distributed over time and frequencies as in Fig. 5.
To mitigate the CSI error, we introduce the GP interpolation
and extrapolation between pilots. Fig. 6 illustrates the GP
regression [31], where CSI interpolation and extrapolation

Pilots
8x7Ts
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Estimated H
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1st

Weight generation B:
a few times per frame

Fig. 6. GP regression to interpolate and extrapolate CSI estimation.
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Fig. 7. PAPR performance with/without nonlinear lattice VP and linear
nullspace VP for massive MU-MIMO OFDM systems.

are performed given available estimates of CSI assuming
that the stochastic process is based on the Gaussian kernel.
The GP regression provides not only the CSI estimates but
also the estimation mean-square error (MSE), which is useful
to use MMSE-based BD precoding for higher tolerance of
the CSI mismatch. Because the CSI can slowly vary over
time and frequency, we can employ the recursive projection
approximation subspace tracking (PAST) algorithm [30] to
reduce the computational complexity at the BS.

IV. PERFORMANCE ANALYSIS

We use the lattice factor of Λ = 1.5 for lattice vector
search based on the p-norm sphere encoder [19] with M = 16
survivors. To search for the nullspace vector, we use the
FITRA [22] with a maximum number of 2000 iterations and
a regularization parameter of 0.25. Unless explicitly stated
otherwise, all simulation results are for an MU-MIMO OFDM
256QAM system having Nt = 1024, Na = 16, and Nd = 64
antennas at the BS and serving Nu = 8 UEs with Nr = 2
antennas. We employ OFDM with Ns = 64 subcarrier tones.

A. PAPR Reduction

To compare the PAPR characteristics of different precoding
schemes, we evaluate the complementary cumulative distribu-
tion function (CCDF) and the 1%-outage PAPR that is valid
at most for 99% of all simulated OFDM symbols. Fig. 7
shows the CCDF of PAPR performance for the BD precoding
with/without the linear nullspace VP and the nonlinear lattice



VP. It is seen that the nonlinear VP significantly reduce the
1%-outage PAPR performance by at least 3 dB. The linear
VP offers an additional 0.3 dB gain because the excessive
DoF is relatively large, Ne = 48 compared to the number
of multiplexing streams NuNr = 16 per symbol. In addition,
the nullspace vector w ∈ CNe can take any complex-valued
numbers, whereas the lattice vector λ ∈ 2Λ · ZNuNr can
take from lattice points with smaller dimension. Nevertheless,
this additional DoF over nonlinear lattice space on top of the
linear subspace can improve the PAPR performance slightly
more when both VPs are jointly used. Consequently, the joint
VP achieves a total of 4 dB PAPR reduction. This PAPR
reduction can directly improve the power efficiency of the RF
components, e.g., the backoff for power amplifier.

B. Spectral Efficiency

We then evaluate the achievable spectral efficiency of
the proposed joint VP. Fig. 8 shows the outage sum rates
at a channel SNR of 20 and 30 dB for different fading
speed with a normalized maximum Doppler frequency of
fDTs = 0.002, 0.003, 0.004, 0.005. This figure also presents
the BD precoding with the perfect CSI knowledge at the BS
as a benchmark. We can see that the rapid fading degrades
the achievable spectral efficiency in particular at high SNR
regimes. For example, the penalty due to the imperfect CSI is
about 22% loss in spectral efficiency at an outage probability
of 0.1 for an SNR of 30 dB and fDTs = 0.0002. This penalty
will be more significant at faster fading of fDTs = 0.005;
specifically, 65% reduction in outage spectral efficiency is
observed. It is nonetheless confirmed that the GP regression
offers considerable tolerance against time-varying fading. In
fact, the decreased spectral efficiency will be raised up by
130% with the joint VP and GP. Note that the joint VP can
improve the sum rates by approximately 10 bps/Hz, because of
the improved power efficiency, compared to the BD precoding
without VP.

V. CONCLUSION

We investigated large-scale MU-MIMO OFDM wireless
downlink systems employing a nullspace VP with both nonlin-
ear lattice and linear subspace precoding to achieve low PAPR
while nullifying IUI. The proposed method exploits excessive
degrees of freedom offered in massive antennas. We also
introduced the GP regression approach to be robust against
the imperfect CSI, which is required for the VP operation. In
addition, we introduced a low-complexity subspace tracking
method for time-varying fading channels. Our analysis of out-
age capacity revealed that the proposed VP with GP regression
offers a significant improvement in sum-rate spectral efficiency
while reducing the PAPR by 4 dB.
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