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Abstract
This paper reports a new architecture of power amplifiers (PA), for which machine learning
is applied in real-time to adaptively optimize PA performance. For varying input stimuli
such as carrier frequency, bandwidth and power level, developed algorithms can intelligently
optimize parameters including bias voltages, input signal phases and power splitting ratios
based on a user-defined cost function. Our demonstrator of a wideband GaN Digital Doherty
PA achieves significant performance enhancement from 3.0-3.8 GHz, in particular, at high
back-off power with approximately 3dB more Gain and 20% higher efficiency compared with
analog counterpart. To the authors best knowledge, this is the first reported work of model-
free machine learning applied for Doherty PA control. It explores a new area of RF PA
optimization, in which accurate analytical models and tedious manual tuning can be avoided.
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Abstract—This paper reports a new architecture of power am-
plifiers (PA), for which machine learning is applied in real-time
to adaptively optimize PA performance. For varying input stimu-
li such as carrier frequency, bandwidth and power level, devel-
oped algorithms can intelligently optimize parameters including
bias voltages, input signal phases and power splitting ratios based
on a user-defined cost function. Our demonstrator of a wideband
GaN Digital Doherty PA achieves significant performance en-
hancement from 3.0-3.8 GHz, in particular, at high back-off
power with approximately 3dB more Gain and 20% higher effi-
ciency compared with analog counterpart. To the authors’ best
knowledge, this is the first reported work of model-free machine
learning applied for Doherty PA control. It explores a new area
of RF PA optimization, in which accurate analytical models and
tedious manual tuning can be avoided.

Index Terms—Machine learning, Digital Doherty, GaN, Power
Amplifier, Optimization

1. INTRODUCTION

Recently, Digital Doherty PA (DDPA) development has
made rapid progress and shown unique advantages compared
with conventional analog Doherty PA [1-3]. Instead of using
analog power divider (i.e. Wilkinson divider) to split RF input
power for main and peaking amplifiers, multi input ports are
independently fed and controlled in DDPA. It offers notable
merits such as reduction of unnecessary power loss, when
peaking amplifier is OFF at low power. Thus, it can obtain
higher power gain compared with that of Analog DPA. More
importantly, it also enables dynamic phase alignment, which is
a key factor for DPA power efficiency, and linearity.

Nonetheless, in practice it is a tedious and experience-based
procedure to obtain the optimum operating status for such a
complex circuitry with multi-input architecture. This is be-
cause of the interaction among the multiple amplifiers, that
active load modulation is occurring between main and peaking
amplifiers output. In addition, both main and peaking PA re-
quire separate stimulus and bias voltage setting. For instance,
optimum input signal’s phase for main and peaking amplifier
depends on input power levels, frequencies, signal modula-
tions, bias voltages, and temperature. Altogether, these result
in quite large space of variables. Thereby, brute force search

of optimum control parameter becomes inefficient and can be
hardly implemented in practice.

So far, the published papers are mainly relying on analytical
model to create a static phase, input power and/or frequency
mappings [2]. This has several limitations: (1) derived math-
ematical equations only providing approximation of highly
non-linear relationship within PA (i.e. arctan function); (2)
bias voltages optimization not included so far (3) Open-loop
implementation without capturing the device-to-device varia-
tion or condition changes (i.e. ambient temperature). Manual
tuning is still required to account for the dynamics of real sys-
tems and condition varies.

In this work, we proposed and validated a new machine-
learning based optimization platform as shown in Fig. 1. In
real-time, it adaptively controls and optimizes the operation of
multi-input PA for dynamic stimuli and operating conditions.
A dual-input Digital Doherty PA is chosen as a demonstrator,
whose operation is optimized by Al (artificial intelligence)
algorithms without any manual interaction.
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Fig. 1. System diagram of proposed real-time closed loop machine learning

based dual-input digital Doherty PA.

This paper is organized as follows: Section II explains the
optimization algorithms, and Section III presents measurement
results. Conclusion and future works are given in Section I'V.



II. ALGORITHM

The architecture of, and machine learning algorithm for du-
al input digital Doherty amplifier in this work are shown in
Fig. 2.
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Fig. 2. (a) Topology of adaptively controlled DDPA, and (b) machine-
learning algorithm flow chart used in DDPA.

Key parameters including gate bias voltages for main ampli-
fier (Vg_main) and peaking amplifier (Vg _peak), dual-input
signal’s relative phase (4®), and power ratio (o) are adaptive-
ly optimized by algorithm. It performs the optimization in an
iteratively manner based on the measured PA output perfor-
mance. A cost function is defined to evaluate PA performance
including output power, linearity (ACPR: adjacent channel
power ratio), Gain with proper weighting factor depending on
the applications. To search for the optimal control parameters
6* with maximum cost function Q(6):

6* = argmax Q(0)
ey
where 0 is a vector of the amplifier tuning parameters de-
fined as 0= [Vg main, Vg peak, A®, a]. We implemented
model-free optimization methods of simulated annealing (SA)
and extremum seeking (ES), as shown in Fig.2 (b). The com-
bination of SA and ES makes the system hybrid, where SA
captures the random and abrupt variation in the system mainly
due to frequency and input power level variations, whereas ES
captures slow variation in the model due to temperature.
There are two phases to find the optimum solution of 6*

e PhaseI (SA):

Starting with a random initial point 8, and Temperature 7.
For each iteration randomly generate 6 within the pre-defined
boundary while decreasing the temperature T with a discount
factor y as T y*T.

For each random move at i iteration, determine the cost
0(6,t), and accept the move and store 6 if

00.)-0(0,t-1)>0

In case if the condition is not met, then by using Boltzmann
condition, the random move can be accepted as follows,

randf0,1]<e™((—(Q(6,t) — Q(6,t — 1))/T) )

If the above conditions are not met, then that particular
move is not accepted and the next random point is generated.
We accept some random moves even though their cost is less
than the previous cost to avoid local minimums. The above
procedure repeated until the Temperature 7 is above the
threshold 75.

Next, the best 8 best with the maximum cost Q(6) is select-
ed to find the best optimal parameters to achieve maximum
cost within the explored set of values. Exploitation phase en-
sures to find the global optimum.

e Phase II (ES):

Algorithm then switches to ES once DDPA achieves maxi-
mum cost within the explored set of values. The goal of ES
phase is to fine tune the values of optimal parameters with a
local search. The extremum seeking iteratively perturbs the
parameter of the amplifier with a perturbation signal having a
predetermined frequency until a termination condition is met

[5].
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Fig. 3. Schematic of ES controller for the simple case of one tuning parame-
ter.

Fig. 3 illustrate the basic concept of ES algorithm for the
case of one tuning parameter. The ES controller injects a si-
nusoidal perturbation asin(wt) into the system, resulting in an
output of the cost function. This output is subsequently multi-
plied by asin(wt). The resulting signal after multiplying a gain
/, an estimate of the gradient of the cost function with respect
to the cost function 6. The gradient estimate is then passed
through an integrator 1/s and added to the modulation signal
asinmt.



III. EXPERIMENT

A test bench is built for demonstrator testing with a Dual-
channel digital GaN Doherty amplifier.
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Fig. 4. Measurement setup of machine-learning DDPA.

We implemented the optimization algorithems in Matlab
running on Windows PC. The automatic testbench including
Spectrum analzyer (Agilent E4440A), power meter (Agilent
N1912A), DC power supply (Agilent E3634A) of gate bias
voltages control are connected to Windows PC via ethernet.
AD9371 dual-channel RF transciver and Xilinx FPGA ZC706
are used to provide input RF signals with driver amplifiers
from MiniCircuits (ZHL-16W-43+). The reported wideband
GaN Doherty PA is modified at the input for DDPA topology
[5].

It should be mentioned that our machine learning algorithm
is different from the type of deep learning such as DNN (deep
neural network) in the sense that it neither require massive
training data nor powerful computation capability.
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Fig. 5. Measured output power and cost function with adaptation of optimiza-
tion algorithm.

Fig. 5 shows the iterative procedure of improving output
power (Poy) and cost function. It takes about 40 iterations for
SA to perform random exploration with fast convergence. It is
then followed by ES algorithm for fine tuning to account for
effects such as temperature changes.

Fig. 6. shows the linearity also improves after iteration by
10dB for 150MHz instannece signal stimuls at 3.6GHz carrier
frequency without any digital predistortion. Fig. 7 shows more
than 20% efficiency for AI-DPA compared with analog DPA

(same output matching) for CW signal at 3.6GHz with power
sweep.
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Fig. 6. ACPR comparison before (a) and after optimization.
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Fig. 7. PAE comparison between AI-DPA and analog DPA.

IV. CONCLUSION

We proposed and experimentally valiated a new model-free
self-adptive optimzation method for RF power amplifier. The
built prototype shows significant performance improvement
comparied the analog version with promising potential to be
applied to advaned RF circuit optimzation.
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