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Abstract—This paper proposes a machine learning based
state-space approximate dynamic programming (MSADP)
approach to solve the self-scheduling problem faced by power
plants under an integrated energy and reserve market. By
extending the concept of residual demand curves (RDCs) from
energy to reserve, the residual reserve curves (RRCs) is proposed
to model the regulation price as a function of the power plant’s
reserve power. Both RRCs and RDCs are obtained using a
clustering based neural network approach, which resulted in
better estimates than using only a non-parametric approach. The
machine learning is used to make approximations to the state
space, and the dynamic programming only loops over the
required states. As such, the computation effort is reduced but
the solution quality does not be impacted. The value functions
generated during the day-ahead optimization are used to
generate optimal supply offer curves for the day-ahead market,
and make real-time decisions and real-time bids to stay optimal
by solving Bellman optimality condition. The effectiveness of the
MSADP approach is demonstrated using empirical data obtained
from the New England ISO.
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I. INTRODUCTION

Under a deregulated electricity market, power plants aim to
maximize their financial benefits by self-scheduling of their
generation units in both the day-ahead and real-time energy
and reserve markets. In this paper we focus on price makers
who have the power to influence market clearing prices
(MCPs). In the day-ahead electricity market, power producers
aim to submit optimal stepwise supply offer curves to the
independent system operator (ISO). The producer’s supply
offers are in pairs of price and quantity for each time-step in up
to a certain number of steps that are arranged according to
increasing prices [1]. Regulation offers are usually given as a
single pair of price and reserve power for each hour [2]. Power
producers obtain these offers by self-scheduling their
generation units under uncertain MCPs, regulation clearing
prices (RCPs), weather forecast and competitor offers.

To meet the needs for better coordination of energy and
reserve services provided by the power producer, we has
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extended the concept of residual demand curves (RDCs) from
energy to reserve, and use RDCs and residual reserve curves
(RRCs) simultaneously to model the relationship between the
powers sold and the corresponding prices in the producer’s
self-scheduling problem. RDCs are used to define the MCP as
a monotonically non-increasing function of the producer’s
quota for each time-step, and obtained by subtracting the
quantity offered by the competitors from the total cleared
demand of the system. Similarly, we present residual reserve
curves (RRCs) to model the RCP as a function of the
producer’s reserve power. In the literature, RDCs are usually
obtained using previous days’ combined competitors’ offer
curve and non-parametric approaches such as in [3]-[4], and
reserve is assumed to be known in advance as in [5].

A clustering based artificial neural networks (ANN)
approach is proposed in this paper to estimate RRCs and
RDCs. The historical combined competitors’ day-ahead supply
offer curves are first classified into a set of clusters according
to the corresponding MCP/RCP of the next day, in which the
combined competitors’ offer curves are obtained by adding
individual competitor’s supply offer curves. An ANN is then
used to train a model for each cluster that maps combined
competitors supply offer quotas/reserves and prices with total
system cleared demand/reserve. When the system
demand/reserve forecast from the ISO for next day are given,
the trained non-parametric model for a chosen cluster is used to
estimate the day-ahead combined supply offer curve and then
the corresponding RDCs/RRCs can be generated accordingly.
The cluster is chosen based on the estimated MCP/RCP.
Through clustering, the proposed approach can result in better
estimates than using only a non-parametric approach.

The power plant’s self-scheduling and associated unit
commitment problems are widely solved using mixed-integer
linear programming (MILP) and dynamic programming
approaches such as in [5]-[8]. Using MILP solvers, non-linear
constraints, RDCs and RRCs will have to be approximated as
stepwise or piece-wise linear curves, and as a consequence, the
accuracy loss might not be avoidable. Dynamic programming
provides a good tool for modeling non-linear constrains and all



the necessary points of the RDCs and RRCs, however, it
suffers from dimensionalities of state spaces.

In order to overcome the above difficulties, we model the
problem as a Markov decision process (MDP) and solve using
a machine learning based stat-space approximate dynamic
programming (MSADP) approach. Using dynamic
programming, all necessary points of RDCs and RRCs, and
nonlinear constraints can be accurately modelled without linear
approximation. The computational burden for dynamic
programming is reduced by only looping over the desired quota
and reserve states obtained using machine learning. In the day-
ahead optimization, value functions defined as expected future
benefit from all the possible quota, reserve and generator status
combinations are generated for every time-step in the decision
horizon. These value functions can help the producer to
generate optimal bidding curves for the day-ahead market, and
assist with real-time decisions and real-time bidding to stay
optimal. At each time-step in the real-time market, the power
producer can use the value functions to determine their optimal
energy quota and reserve power for the next time-step given
the current generation by solving Bellman optimality
condition. Note that the current generation depends on the
amount of energy quota that was accepted by the ISO in the
day-ahead market and the amount of reserve used, and both are
not predictable. Given this, the producer can adjust their prices
in the real-time market and make the generation decisions to
stay optimal according to Bellman’s optimality condition.

The effectiveness of the proposed approach is demonstrated
using empirical data obtained from the New England ISO.

II.  FORMULATION OF SELF SCHEDULING PROBLEM

Taken thermal plant as example, the power producer’s self-
scheduling problem can be formulated as a sequential decision-
making problem over a given decision horizon. This problem
can be described by using the input states for the producer, and
the controllable states for the generation units of the plant.

For any time step k, the producer’s input state variables
include the MCP S]}("e, RCP Sl}("r , forward bilateral contract
price sli"f, required regulation reserve sy, forward bilateral
contract power sf, and energy production quota sy (not

included forward contract power) for the power plant. RCP

consists of two components, regulation capacity offer price

s . . .
sp'"P and regulation service offer price sy

Among those power producer states, the forward contract
power and price are given, and the MCP and RCP are functions
of producer’s quota and reserve powers if corresponding RDC
and RRC are given, so only producer’s quota and reserve
powers need to be treated as independent states to be solved.

For any generation unit g, its controllable state variables at
time step k include the generator up/down status s]‘%’s, power
generated at the current time-step sy” , start-up command sp"
and shut-down command sE’d, and generator remaining up time

Et and remaining down time sk . The states of generation
units are subject to its technical constraints according to its
operating status and power balance required by producer’s
energy quota and reserve requirement.

Once a thermal generator is committed, its operation status
can be categorized into four consecutive operation phases,
including  synchronization, soak, dispatchable, and
desynchronization. The power generated during the

synchronization phase is zero while the power increases
g,syn/soak to

from limit  s)
during the soak phase, and

linearly synchronization/soak

.. . . .. _gmin
minimum generation limit sk

decreases linearly from sk " to zero during desynchronization
phase [9]. During the dispatchable phase, the power generation

limit can range from the minimum power generation limit

gmin gmax
S, and maximum power generation limit sy

l%mm < Skp < ngax’ (1)
according to the ramp up rate r&" and ramp down rate r&9 as
follows:

—-red < sﬁfl — sﬁ’p < rd% 2)
The network constraints for exporting the power generated to
the connected power system can also be represented by
modifying the power limits accordingly, if applicable.
Generators can only be started when the minimum down time
184 is satisfied:

BU (B _ redy >, 3)
and be shut down when the minimum up time t8" is satisfied:
BB _ qauy > 0, 4)

The total power generated from all the generation units have to
be equal to the producer’s quota, forward contract power and
the reserve used Sy
Yoy stP =) +sf + 3 %)
where G is the total number of generation units for the plant.
Meanwhile, the regulation reserve has to be met according to:
S 8E=s)+ s+, (6)
where §]§ is the maximum possible generation considering the
ramp rates and the maximum power generation limit. (2)-(4)
can be used to define the transition function, sgi 1= sM(sgﬁ)
when solving the self-scheduling problem using dynamic
programming. The transition function describes the evolution
of generator g’s states from time step k to time step k+1.

: : : d t td :
sge = [sE? sp° sF" sBY sBM SBY] L sM() is the
system model that consists of generators’ operational

constraints.

Among all the generator’s states, the start-up and shut-
down commands and remaining up and down times can be
determined if generator statuses at corresponding time-step or
consecutive time steps are given. For a committed generator
operated at non-dispatchable phases, its generated power is
solely determined based on its corresponding up/down statuses.
The power generated for generators at dispatchable phase can
also be determined by simply solving an operational cost
minimization problem with power balance and power
generation limits when the producer’s quota and reserve,
generator status, and initial/terminal states are given.
Therefore, only the generator up/down status combination
needs to be treated as independent state variable among all
generator related states.



The self-scheduling problem can be treated as a dynamic
programming problem with three-dimensional state space on
producer’s quota, producer’s reserve power and generator
status combination. Its objective function is given by:

* _ K
F™ = maxy E{ZE_; Cr(si, T(s1))} (7
where T is the optimal policy, a choice of action for for each
state t: S — A that maximizes the expected sum of future
benefits over the decision horizon, m(sy) is an action from
state ), S and A are the state and action spaces, K is the total
number of time steps. Ci(sy, ™(sy)) is the contribution at a
given time-step k, which is given by:
— Me a A f A,r,cap
Cic(S1o T(SK)) = Sicy1Sks1 + SichaSket +Sih1 Skt
= AL, : i :
T R M AR

start[ .&td ) gu shut/.gtuy _gd
¢ (Sk+1)sk+1+c (ske1)Skaa ®)

where s, consists of input states for power producer

[s) s]}:e Sk s]}:r sk sl};’f], and controllable states for
1 g G1T is th
generators [sgk - S8y sgk] Sk+1 18 the state at

time step k+1 resulted by following action m(sy) from sy .
cfixed j5 the generator’s non-load cost, cf¢!(+), ¢S () and
cSPUt(+) are the generator’s fuel cost, start cost and shut-down
cost respectively. sg'" is the capacity utilization ratio defined
as the ratio of service offer time over length of time step. The
fixed cost is a constant, and the fuel cost and start and shut-
down costs are non-linear functions of generation level,
remaining down time and remaining up time respectively.

1. MACHINE LEARNING BASED STATE-SPACE
APPROXIMATE DYNAMIC PROGRAMMING

The producer’s self-scheduling problem is solved using a
machine learning based state-space approximate dynamic
programming (MSADP) approach proposed in this paper.

A. Dynamic programming procedure

The problem in (7) can be cast as a Markov decision
process (MDP) due to the separable objective function and
Markov property of the transition functions. Given this,
dynamic programming solves the MDP form of (7) by
computing a value function V™(sy).

The value function is defined as the expected future benefit
of following a policy, 1, starting in state, S, and given by:

VT(si) = Zs'es P (8" |k, w(si))[Cic (Sk, (1), 87) + V”(S(g%
where s’ is the state transited from s} through action m(sy),
P(s'|sy, (sy)) is the transition probability. When the
probability data is not available, or difficult to obtain, the
expected value can be replaced with the maximum value, that
is the right side of (9) is replaced with the maximal value of
Cr(sy, @(sy),s') + V™ (s") overs' €S.

An optimal policy, " is one that maximizes (7), and which
also satisfies Bellman’s optimality condition:

Vi (sie) = maxy: (C(s (1)) + E{Vi%1 (s)lsic}) (10)
The expression in (10) is typically computed using backward
induction, a procedure called value iteration, and then an
optimal policy is extracted from the value function by
selecting a maximum value action for each state.

B. Implementation of proposed approach
The proposed MSADP approach is given in Algorithm 1.

Algorithm 1: MSADP Algorithm

1: Load RDCs and RRC:s for all time-steps.
2: Approximate end-of-day states.

3: Initialize Vi (Sy0),Vk.
4:fork=K,...,1do

5: ,Bdo

6: ..., Ydo

7: =1,...,Rdo

8: Find the optimal power generation levels by solving a

optimization problem to minimize fuel costs.

9: Calculate fixed, start and shut-down costs.

10: Find the instantaneous contribution using (8).

11: end for

12: Solve the Bellman equation (10) to calculate the expected
future value from the state combination of current quota,
reserve and generator statuses.

13: end for

14:  end for

15: end for

The lower-case letters, b, y and r represent a particular quota
and reserve power combination, generator status combination,
and future (next time step) quota, reserve and generator status
combination, respectively. Meanwhile, the upper-case letters,
B, Y and R represent the total numbers of quota and reserve
combinations, generator status combinations, and future state
combinations of quota, reserve and generator statuses,
respectively.

To avoid looping over all the undesired states (backward in
time) that does not have a path to the desired end-of-day states,
the proposed approach first approximates the end-of-day states
s, and st using either the historical data or by solving a
deterministic MILP optimization over two or more days. The
value functions are initialized as zeros for all time steps except
the last time-step (k=K+1) where we need to penalize the
undesired states by setting their values as negative infinite or
provide a benefit for the desired states.

Each possible combinations of quota and reserve power in
step 5 for a current time step specified in step 4 should be
above the minimum power generation limit out of all the
committed generators and below the total of the maximum
possible power of all the committed generators. Each possible
combinations of generator up/down statuses in step 6 for a
current time step and quota and reserve combination specified
at steps 4 and 5 should satisfy the regulation reserve, current
quota and the committed forward bilateral contracts without
violating any constraints.

Each possible state combination at future time step in step 7
should satisfy the minimum up and down times, and ramp up
and down rates for each generator for a current time step, quota
and reserve combination, and generator status specified at steps
4, 5, and 6. If no such state combination exists then penalize
the current state combination. Otherwise loop over all the
possible outcomes R. Given the future state r, the power
generated from each of the generator units will be determined
in step 8 to match the total power requirement for quota,
reserve and forward bilateral contract power. This is a simple
linear program with the objective to minimize fuel cost if the
fuel cost is approximated as linear function of generated
power. The power generation limits of each generator are
modified to satisfy the ramp rates. Step 9 calculates the fixed



cost and the start and shut-down costs using the statuses of the
generators at the future state combination at next time step.
Step 10 calculates the instantaneous contribution using (8).

In step 12, the expected future value from the current state
combination is determined using Bellman equation (10). This
is the maximum of the combined instantaneous contribution in
step 10 and the expected future value for the outcome r out of
all the possible outcome states R. Once we have the value
functions for all the time-steps, we can move forward in time
from the initial states at k = 1 to find the optimal policy.
Optimal policies from different states can be used to generate
the offer curves that are submitted for the day-ahead market. If
the estimations are accurate enough the resulting optimal quota
obtained from the value functions would be most likely get
accepted by the ISO. Moreover, in real-time when the power
generated at a certain time-step changes due to unforeseen
reasons, the generation plant can use the value functions to stay
optimal from the next time-step by making real-time bids and
real-time decisions. The unforeseen reasons could be when the
expected quota wasn’t accepted by the ISO or when the ISO
require regulation reserves.

C. Machine learning based state-space approximations

It is noted that looping over all the states in a three-
dimensional state-space is computationally difficult. In order to
overcome this computational burden, we use machine learning
to make approximations to the state-space. The aim is to only
loop over the required or desired states so the solution quality
stays the same. Only the state space reduction on quota and
reserve is considered here.

To approximate the quota and reserve states for the
producer for a given time step, we first use historical data to
learn a non-parametric model using ANN that maps MCP
before producer’s quota, total system cleared demand, RCP
before the producer’s reserve, and total system reserve
requirement by the ISO (ANN inputs) with producer’s quota
and reserve (ANN outputs) as shown Fig. 1. If the typical
values for reserve used ratio (i.e.3p/sy) that needed for
determining reserve used in (5) and (8) are not available, it can
also be estimated along with producer’s quota and reserve by
adding it to the list of ANN outputs. This non-parametric
model is then used to estimate possible day-ahead quota and
reserve based on the estimated next-day MCP and RCP, the

MCP before producer’s
quota

Quota states
Total cleared demand A
Non-parametric

RCP before producer’s Model (ANN)

Reserve states
reserve
Total reserve
requirement

Fig. 1. Non-parametric model with inputs and outputs used to
approximate the state space.

reserve requirement and the demand forecast provided by I1SO.

If the estimation accuracy is good enough, the estimated
producer’s quota and reserve values can closely match with the
actual quota and reserve for the next day. The estimated quota
and reserve power states are used to identify the interested state
space of the self-scheduling problem, where we have a finer
discretization. In this paper, ANN is a feed-forward neural
network.

IV. RESIDUAL DEMAND CURVES AND RESIDUAL RESERVE
CURVES

Conventionally, a RDC at a given time-step is obtained by
subtracting the total combined competitors’ offer curve from
the total system cleared demand. Similarly, a RRC at a given
time step is generated by subtracting the total combined reserve
offer curves from the total system reserve required by the ISO.

A clustering based non-parametric approach is used in this
paper to model the RDCs and RRCs. The approach is based on
and tested with historical day-ahead producers’ energy offer
[1] and reserve offer [9] data, and their corresponding market
clearing demand [10] and reserve requirements [2] from the
New England ISO. Taken RDCs as example, the combined
competitors’ offer curves are first generated for each hour over
a long period (i.e. 6 months) by adding the individual producer
offers together. The maximum limit of the combined supply
offer curves is set to the day-ahead cleared demand forecast
from the ISO or from the demand bids. This means for a given
combined supply offer curve, the maximum price is the MCP
of the current day. If necessary, the combined competitors’
offer curves can be separated according to the four seasons.
The k-means algorithm is then used to cluster hourly combined
competitors’ offer curves according to the corresponding MCP.
Each cluster represents a different level or range of MCPs. In
the day-ahead optimization, the estimated MCP is used to
identify the cluster with corresponding combined competitors’
offer curves. After that, a ANN is used to train a model that
maps supply offer quotas and the corresponding prices (i.e.
ANN outputs) with total cleared demand (i.e. ANN inputs) in
the chosen cluster. The trained model can then be used to
estimate the combined supply offer curve given the day-ahead
market clearing demand. RDCs are then obtained by
subtracting the estimated combined competitors’ offer curve
from the day-ahead market clearing demand estimate. The
RRCs can be estimated using the same approach as described
above.

Fig. 2 gives exemplar results for modeling RDCs using the
proposed approach. Fig. 2 (a) gives the distribution of
historical supply offer curves at the given time-step k=20. Each
point represents a historical supply offer curve, the x-axis
represents its original market cleared demand, and the y-axis
represents its MCP for the next day’s k = 20 time-step. Fig.
2(b) shows the combined supply offers for k = 20 in the chosen
cluster. Fig. 2(c) shows the errors between the actual and the
estimated supply offer curves using different approaches. Fig.
2(d) shows the estimated RDCs for k = 20.
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RDCs for k = 20.

TABLE I. THERMEL UNITS DATA

Min/ Min Cold/ Soak/ Ramp
Max i{’;:tlll;g/' loNz:)d E(l::tl up/ Cold/ hot/warm warm | Synchroniza- up/ :;l‘:vl; Initial End
Unit Power soak limit | cost S/ Down start cost start tion/Desynch- down cost Power power
Limit [MW] [$/h] | MWh] time [$] time[h] ronization MW/ I$] [MW] [MW]
[MW] [h] time [h] min]
1 160/274 120 894 14 2 1350/1150/1250 4/3 1 4 0 274 170
2 180/342 140 344 15 2 400/200/285 4/3 1 4 0 313 0
3 100/378 70 167 25 1 210/100/150 32 1 24 0 0 0
4 150/476 100 839 10 1 350/250/300 32 1 24 0 476 470
5 63/152 40 965 10 2 20/10/16 4/3 1 8 0 152 0

As depicted in Fig. 2(c), the mean-absolute errors (MAE)
between the actual and the estimated supply offer curves are
lower for the non-parametric approach with -clustering
compared to the non-parametric approach without clustering.
It is noted that previous day’s supply offer curves determined
using data from months ago has the highest MAE, and the
reason for this is that historical data are only available after a
certain delay (i.e. 4 months delay in New England ISO) so
assuming a previous available day will result in lower quality
estimates.

V. SIMULATION RESULTS

The proposed MSADP approach has been tested using
empirical data obtained from the New England ISO. The
techno-economic data of the thermal units are given in Table I.
We use 174 days of data from January 1 to June 30, 2016 for
learning and 30 days in October, 2016 for testing. The test
results on an exemplar scenario on October 1, 2016 are given
in this section. For the scenario, the self-scheduling problem is

solved using the dynamic programming technique with
proposed state-space approximation strategy. Our preliminary
simulation results showed that the proposed approach can get
same optimal results as MILP when the same simulation
parameters are used, that is all constraints and cost functions
are assumed to be linear.

The simulation results for the exemplar scenario are given
in Fig. 3. Fig. 3(a) and (c) show the MCPs and RCPs before
the producer’s quota, and the MCPs and RCPs after the
producer’s quota. Fig. 3(b) and (d) show producer’s quota and
reserve, and system cleared demand and reserve requirement.
Fig. 3(e) and (f) show RDCs and RRCs for some sample time-
steps. The results show that the producer’s quota/reserve is
closely related to the MCPs/RCPs, slopes of the RDCs/RRCs,
and the system cleared demand/reserve.

Power plant’s optimal quota/reserve obtained from the day-
ahead optimization as shown in Fig. 3(b) and (d) are used to
create the supply offers. It is recommended for the power plant
to submit their marginal cost of production for a range of
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supply offers. Given the estimations of RDCs and RRCs are
accurate enough and benefits of self-scheduling, the marginal
cost offer is expected to be accepted by the ISO. With the value
function based decision making process, power plant can
update real-time offers for upward and downward regulation
reserves. For example, if the generation company is currently
producing more power than their optimal then they can submit
an acceptable downward reserve offer for the next hour by
solving Bellman equation.

VI. CONCLUSIONS

This paper has proposed a machine learning based state-
space approximate dynamic programming approach to solve
the self-scheduling problem faced by power producers under
an integrated energy and reserve market. Residual demand
curves and residual reserve curves are estimated using a
clustering based neural network approach, which resulted in
better estimates than using only a non-parametric technique.
The machine learning is used to make approximations to the
state space, and the dynamic programming only loops over the
required states. As such, the computation effort is reduced but
the solution quality does not be impacted.

The value functions generated during the day-ahead
optimization can be used to make optimal real-time decisions
and real-time offers under market condition variations by
solving Bellman’s optimality condition. Producer’s day-ahead
offers obtained from the value functions are expected to be
accepted by the independent service provider as long as all the
estimations are accurate enough.
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