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Abstract
In this paper, we present a problem of regulating the motion of a rolling ball in a one-
dimensional space in the presence of non-linear effects of friction and contact. The regulation
problem is solved using a model-based reinforcement learning technique. A Gaussian process
model is learned to make predictions on the motion of the ball and then, the predictive
model is used to solve for the control policy using dynamic programming by estimating the
value functions. Several results are shown to demonstrate the simple, yet interesting motion
dynamics for the ball. Our hope is that the proposed system will serve as a simple benchmark
system for reinforcement and robot learning.
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Abstract—In this paper, we present a problem of regulating
the motion of a rolling ball in a one-dimensional space in
the presence of non-linear effects of friction and contact. The
regulation problem is solved using a model-based reinforcement
learning technique. A Gaussian process model is learned to make
predictions on the motion of the ball and then, the predictive
model is used to solve for the control policy using dynamic
programming by estimating the value functions. Several results
are shown to demonstrate the simple, yet interesting motion
dynamics for the ball. Our hope is that the proposed system
will serve as a simple benchmark system for reinforcement and
robot learning.

Index Terms—Reinforcement Learning, Gaussian Process, Po-
sition Regulation

I. INTRODUCTION

This paper presents a study of regulating the position of a

rolling ball in a one-dimensional space using reinforcement

learning [18]. The problem is motivated by a general class of

systems with contact dynamics and various other kinds of non-

linearities like dry friction and hysteresis [9]. To synthesize

accurate controllers for such systems, one needs to account for

the above-mentioned non-linear effects on system dynamics.

Making physical models for these systems which can then

be used for their high precision control is generally very

difficult and requires lot of domain knowledge for precise

modeling. Reinforcement learning [18], on the other hand,

provides a data-driven approach to control these non-linear

systems without creating detailed physical models for the same

and is thus an attractive alternative.

Reinforcement learning algorithms can broadly be classified

in two categories [12], [18]– model-based and model-free

reinforcement learning. Model-Based Reinforcement learning

(MBRL) techniques use examples to learn a model of the

environment, which is then used to find a policy for con-

trolling the system ( [5], [10], [14]). The notion of model-

free reinforcement learning is to bypass the associated model

learning and rather learn the policy using a value or policy

gradient algorithm directly from the data ( [1], [6], [17]).

While some of the classical model-free approaches like Q-

learning, TD-learning [18], etc. have nice theoretical asymp-

totic convergence guarantees, they require a large number

of samples for convergence and thus could be an imprac-

tical option for robotic systems where exploration could be

prohibitively costly. The model-based reinforcement learning

techniques are, in general, more data efficient than the model-

free approaches [3], [5]. However, the performance of these

approaches depend on the accuracy of the learned model, and

any imperfection in the model propagates into the synthesized

policy. A good survey of reinforcement learning techniques for

robotics could be found in [12]. Gaussian process (GP) models

have attracted a lot of attention in reinforcement learning

community [7], [8], [11]. A lot of work has been done recently

to exploit uncertainties in the predictive models for policy

synthesis [4], [5]. Our work is most closely related to the work

presented in [7] on Gaussian process dynamic programming.

In this paper, we use a model-based reinforcement learning

technique to solve a regulation problem for a one-dimensional

system. The system consists of a metallic ball that can roll

along the length of a bar mounted on a tip-tilt platform. The

task is to regulate the position of the ball at a specified location

by controlling the tip angle of the table. This is done by first

learning a predictive model for the motion of the ball using

Gaussian processes. The Gaussian process model is then used

to synthesize a policy by discretizing the system state and

input space. Performance of the MBRL policy is compared to

a PID controller. We show that the learned policy is able to

achieve bang-bang type of behavior for regulating the position

of the system.

Contributions. The paper has the following contributions:

1) We present a low-dimensional control problem which

can possibly be used as a benchmark for reinforcement

(and robot) learning problems.

2) We use a model-based reinforcement learning technique

to solve the regulation problem and present the related

analysis.

In Section II, we present a brief overview of Gaussian pro-

cesses for the completeness of the paper. Section III presents

a simplified simulated example as well as the observed system



behavior. In Section IV, we present the model-based reinforce-

ment learning solution to the regulation problem with some

comparisons to a conventional PID controller. Finally, the

paper is summarized and concluded with some future research

directions in Section V.

II. BACKGROUND

In this section, we provide a background on Gaussian

processes which is used to learn the probabilistic model for

the motion of the presented system. Interested readers are

referred to [16] for detailed description and analysis of Gaus-

sian processes. Using Gaussian processes for model learning

is motivated by the fact that it allows computation of the

uncertainties associated with system dynamics which can be

used to solve the related Markov Decision Problem (MDP) for

reinforcement learning more efficiently due a better model.

Definition 2.1 (Gaussian Processes): A Gaussian process

is a collection of random variables, any finite number of which

have a joint Gaussian distribution.

A Gaussian process (GP) is completely specified by its mean

and covariance function. We define the mean function m(x)
and covariance function k(x,x′) of a real process f(x) as

follows.

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

and the Gaussian process is written as follows.

f(x) ∼ GP(m(x), k(x,x′)) (1)

A Gaussian process is defined as a collection of random

variables which means that the if the GP specifies (x1, x2) ∼
N (µ,Σ), then it must also specify x1 ∼ N (µ1,Σ11) where

Σ11 is the relevant submatrix of Σ. Some of the common

choice for GP covariance function are rational quadratic

(RQ), squared exponential (SE), Matérn covariance functions

etc. [16]. Some of the functional forms of the covariance

function and the associated free parameters are listed in

Table I. The inference problem associated with GP is to

infer the related hyperparameters (or the free parameters).

The associated hyperparameters with a GP are the parameters

corresponding to the mean and covariance function for the

GP. The inference methods compute an approximate poste-

rior, an approximate negative log marginal likelihood and

its partial derivatives w.r.t. the hyperparameters, given the

choice of mean, covariance and likelihood functions. Some of

the common inference methods are expectation propagation,

Laplace’s approximation, Kullback-Leibler (K-L) divergence

minimisation, etc. [16].

III. SYSTEM DYNAMICS

In this section we present an overview of the experimental

system and present some simplistic analysis of its dynamics.

Figure 1 shows the experimental setup with the tip-tilt-rotate

table. An aluminum bar is attached to the tip-tilt-rotate table

(platform) with three degrees of freedom. The platform has

three inexpensive, off-the-shelf HiTec type HS-805BB RC

TABLE I: Some examples of covariance functions used for

Gaussian Process. The first and second are Squared Exponen-

tial (SE) and the third function is a rational quadratic (RQ).

k(x,x′) Free Parameters

σ2 exp(−(x − x′)TΛ−1(x− x′)/2) {λ1, . . . , λD , σ}
σ2 exp(−(x − x′)T (x− x′)/2ℓ2) {ℓ, σ}

σ2(1 + 1

2α
(x− x′)TΛ−2(x− x′))−α {λ1, . . . , λD , σ, α}

model PWM-controlled servo motors that provide accurate

open-loop positioning but do not provide any feedback of the

position. The aluminum bar is approximately 22 cm long and

has a groove along its length. We use a brass ball of diameter

approximately 1.6 cm. The aluminium bar groove is an as-

acquired extrusion, and not particularly precise; it has several

rough areas on the order of 100 microns deviation from flat.

Likewise, the brass ball is painted with an orange fluorescent

paint that adheres only poorly to the surface, with several

bare spots. This causes the ball-and-track system to have a

significant nonlinear response, with significant stop-start dry-

friction hysteresis in some configurations but not others. For

controlling the motion of the ball on the bar, we use only one

of the three degrees-of-freedom of the table to control the slope

of the bar. The bar has steel bolts at the ends to keep the ball

from jumping off the bar. While this arrangement is required

to constrain the ball on the bar, it leads to discontinuity in

the motion dynamics at the two ends (and thus can lead to

modeling errors). We use an RGB camera which is attached

to a fixed frame to estimate the states of the system. The ball

is tracked in real-time using a simple, yet fast, blob tracking

algorithm along with a Kalman filter. All the communication

with the camera and servo motors driving the system is done

using the Robot Operating System (ROS) [15].

To gain an insight on the system dynamics, we analyze a

simplified system in simulation. We model the system as a

point mass with constant mass and a constant coefficient of

kinetic friction for the one-dimensional space. The equations

of motion of the idealized system can be written as follows:

ẋ1 = x2 (2)

ẋ2 = −cx2 + u

where x1, x2 are position and velocity of the system, c is

the coefficient of kinetic friction of the system and u is the

control input (for our system it would be the sin(φ), where φ

represents the tip angle of the bar). In matrix form, it can be

be written as follows:

ẋ = Ax+Bu

where A =

[

0 1
0 −c

]

and B =

[

0
1

]

.

It is noted that the model given by Equation 2 treats the

ball as a point mass and ignores any rotational motion it

has and assumes that the coefficient of friction is a constant

for all points of contact on the bar. In Figure 2, we show



(a) The tip-tilt-rotate platform with three servo motors

(b) The one dimensional set up mounted on the tip-tilt-rotate platform

Fig. 1: The experimental setup used in the paper

simulated trajectories for the simplistic model with a sine

wave excitation. The phase-space of the system shows a

periodic motion. Another important point to note here that

for the simplified point-mass object, the optimal controller for

a regulation problem could be proven to be bang-bang using

the bang-bang principle for linear system [2].

In Figure 3, we show the phase space of the system when

excited with a square wave. The frequency was selected so as

to minimize the chances of the ball hitting the end bolts and

thus to keep the ball oscillating between them. The results as

seen in Figure 3 are quite different from the expected behavior

of the point particle in the simulated examples. The system

depicts a highly non-linear behavior and the system behavior

doesn’t converge to a limit cycle as was expected from the

simulated results. This difference could be mainly attributed to

the non-uniform static friction coefficient, the point of contact

of the ball and the rolling motion of the ball itself. These

effects were not considered in the simulated model as they

are very difficult to model in general. As a result of friction

and the rotational motion of the ball, the ball can’t have a

single stable limit cycle (as seen in Figure 3).

IV. PROPOSED APPROACH

In this section, we present analysis of the regulation prob-

lem. We first present model learning using Gaussian processes

Fig. 2: This plot shows the phase plot of the simplified system

when excited with a sine wave. The observed behavior shows

a periodic motion for the system.
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Fig. 3: This plot shows the phase plot of the actual system

when excited with a square wave excitation. This is very

different from the expected simulated behavior.

and then present details of policy synthesis.

A. Model Learning

In this section, we present analysis for learning a predictive

model for the system and detail related results. We learn a

probabilistic model for the system, that predicts the expected

change in the position and velocity of the system given

the current position, velocity and the control input. More

concretely, we learn a predictive model of a dynamical system

as follows:

xt = f(xt−1,ut−1) (3)

where xt ∈ R
N denotes the state vector at time t and

ut ∈ R
M denotes the input vector at time t. The function

f is an unknown function that we want to estimate from

the training data. We use the tuples (xt,ut) as the training

inputs and the differences ∆t = xt − xt−1 as the training

targets. This input-output relationship is modeled as a GP

and denoted by the function f . Using the training data and

the corresponding training targets, we learn the corresponding



(a) GP predictions of position with the corresponding uncertainty band(in mm)

(b) GP predictions of velocity with the corresponding uncertainty band (in mms−1)

Fig. 4: Result of GP predictions on test data .

GP hyperparameters (see section II). In our work, we have

used the Matern covariance (with parameter ν = 2.5) function

as the choice of the kernel function. The hyperparameters of

the GP model are estimated by maximizing the log marginal

likelihood using the scikit-learn package. The GP-posterior is

then a one-step prediction model. Under assumptions of GP

modeling, the predictions are Gaussian distributed which are

shown in the following equations.

p(xt|xt−1, ut−1) = N (xt|µt,Σt) (4)

µt = xt + Ef [∆t] (5)

Σt = varf [∆t] (6)

For multi-dimensional targets, we train conditionally indepen-

dent GP models for each target dimension.

In Figure 4, we show the result of GP predictions along

with the uncertainty bands (corresponding to a significance

level of 95%) for position and velocity respectively. The

results are also shown and compared with random forests

and ridge regression (as a representative of a linear model)

in Table II. For GP models, the errors are calculated based

on the mean predictions. In other words, we donot use the

associated uncertainty in the GP model in planning. This is

left as an exercise for future work. Overall, it is seen that GP

performs better than the linear ridge regression as well the

random forest regression.

TABLE II: Training error results for different models. Lower

is better.

Model Position (mm) Velocity (mms−1)

Training Test Training Test
Gaussian Process 2.2 3.5 0.67 0.76

Random Forest 1.76 4.86 0.67 1.00

Ridge Regression 5.14 5.73 1.76 1.64

B. Policy Synthesis

In this section, we present the details of the policy synthesis

steps using the learned model from section IV-A. The objective

is to find a deterministic policy/controller π : x 7→ π(x) =
u(x) that minimizes the expected cost which is given by the

following equation:

Jθ(x) = min
a∈A

{c(x, a) + γJθ(x̂)}, (7)

where Jθ is the value function parameterized by θ and γ is

the discount factor. In our policy-synthesis setup, we use a

cost-function that solely penalizes the distance of the current

state from the target state. This is, in general, sufficient for

solving a regulation problem as reaching a target state with

high speeds leads to high long-term costs due to overshooting

and thus poor performance. We use a generalized binary cost

function given by the following equation [5].

c(x) = 1− exp

{

−(xtarget − x)2

2σ2

}

(8)

The cost function in Equation (8) acts as a locally quadratic

cost function that saturates to one in regions away from the

goal state for the system. The local region width is controlled

by the parameter σ. In our experiments, we use a σ equal to

5mm. This in turn implies that the synthesized policy should

try to maintain the position of the ball within 5mm from the

target state.

We synthesize the policy for the regulation problem using

value iterations by estimating the value functions. The value

functions are estimated on a discrete state-space. The state-

space of the system is discretized to a grid of size 200× 21,

where the position space is discretized into 200 points and

the velocity in 21 points. The input space of the system is

discretized to 21 steps. The synthesized policy is implemented

using a nearest neighbor interpolation in the continuous state-

space. The control is implemented at a frequency of 30Hz.

Figure 5 shows the experimental results of the reinforcement

learning controller and its comparison to the PID controller.
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(a) Position of the ball with time for the RL-based and PID controller.
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(b) Mean absolute error in the position of the ball from the goal position with
time.

0 1 2 3 4 5 6

Time (in seconds)

−60

−40

−20

0

20

40

60

C
on

tr
ol

 s
ig

na
l

Control Signal

PID­based
RL­based

(c) Control inputs for the RL-based and PID controller
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Fig. 5: Comparison of the RL-based controller with the PID controller.

The goal of the comparison is to show the advantage of

RL-based controller against a controller which doesn’t have

access to a predictive model (and thus is reactive). The PID

controller is implemented with fixed gains. To calculate the

statistics of performance of the two controllers, we conduct

five independent runs of both controllers from the same initial

state of the system. In Figure 5a, we show the plot of position

of the ball with time as well the target state for regulation. In

Figure 5b, we plot the average absolute error in ball position

from the target state. These two plots show the superior

performance of the RL controller, and also illustrate that the

RL controller is able to maintain the position within 5mm
of the target state (which was the parameter σ specified in

the cost function of). Moreover it shows the planning of the

RL controller where the ball first accelerates and then tries to

come to rest as it approaches the target state (thus minimizing

overshoot). This behavior is similar to the bang-bang control

for the simplified point-mass system presented in Section III.

The PID controller, however, acts in a reactive fashion and

thus incurs higher settling time and steady-state error. The plot

in Figure 5a show large oscillations around the target point

for the PID controller– such oscillations could be reduced for

a system by reducing the controller gain. However, due to

the presence of dry friction, we can’t reduce the controller

gain in our case as the ball doesn’t move at times if the tip

angle is small depending on the point of contact of the ball

with the bar. The difference in behavior of the two controllers

could be seen in Figure 5a where the RL-based controller

starts decelerating (notice the point after which position-time

behavior changes starting from the same state and the RL-

based controller moves slower) so as to reach the target state

with minimum overshoot. The RL-based controller also suffers

from some small oscillations in the neighborhood of the target

state. This could be mainly attributed to the modeling error and

the state estimation errors.

Figure 5c shows the control signal behavior for the RL and



PID controller where also the difference in the behavior of

the two controllers could be noticed. The RL-based controller

tries to slow after an initial start (notice the change in sign

of the control input). Figure 5d shows the cumulative cost for

the two controllers where the RL-based controller performs

significantly better. The cumulative cost is calculated for a

window of 6 seconds where the cost of an individual state

is given by Equation (8). The cost achieved by the RL-

controller is much lower than the PID controller. For clarity

of presentation, comparisons of the two controllers are listed

as a table in Table III.

TABLE III: Performance of RL-based and PID controller. All

statistics are calculated at the end of 6 s. Lower is better for

all variables.

Controller Type Mean Error (mm) Cumulative costs

RL-based 4.8 97.5

PID 40.2 167.5

Even though the RL-based policy shows a bang-bang type

behavior, it doesn’t seem to be exactly the time-optimal bang-

bang solution. Based on the current understanding, this is

mainly attributed to the inaccuracies in model learning.

V. DISCUSSIONS AND SUMMARY

In this paper, we presented a one-dimensional motion

regulation problem which was solved using a model-based

reinforcement learning technique and compared with classical

model-free PID controller. Even though the system is con-

strained to move in a single dimension, it has rich non-linear

dynamics for the presence of contact forces, rolling motion

and dry friction. We showed that these factors introduce non-

linear characteristics in system dynamics, which we believe

would be difficult to model from first principles of physics.

We learned predictive models from system data using Gaussian

processes to predict system states and then, synthesized system

policy on a discrete state-space. The time-optimal control

for a lot of linear system regulation problems is bang-bang,

under certain conditions [2]. From our analysis we showed the

learned controller displays bang-bang-type behavior without

any knowledge of underlying system dynamics. Our hope is

that we can use the insights from this study to analyze more

complicated motion models in more complex and constrained

environments where friction forces and contact dynamics

cannot be ignored.

In the future we would like to learn a better dynamic

model for the presented system by explicitly incorporating

discontinuities due to contact forces to improve modeling

accuracy. We would also like to implement the PILCO frame-

work [5] to compare the benefits it can provide over the current

policy synthesis process by making use of the uncertainties in

model learning. Another interesting future work is to solve

the regulation problem in an end-to-end fashion using deep

learning approaches [13].
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