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Abstract

This paper introduces a new coupled mixture of polynomial phase signal (PPS) and sinusoidal
frequency modulated (FM) signal, motivated by real-world applications, e.g., contactless lin-
ear encoders. Specifically, the coupling is introduced to express the sinusoidal FM frequency
as a function of the PPSrelated parameters. Given the coupling mixture, it generalizes two
existing models: 1) the pure PPS model and 2) the independent mixture model. Performance
bounds of parameter estimation for the coupled mixture model are established in terms of
the Cramer-Rao bound (CRB). Uunlike the pure PPS case, the derived CRB shows its depen-
dence on the PPS-related and sinusoidal FM-related parameters due to the coupling mixture.
On the other hand, the derived CRBs for the PPS-related parameters are lower than their
counterparts of the independent mixture model, as the sinusoidal FM frequency provides
additional information on the PPS parameters.
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Cramér-Rao Bounds for A Coupled Mixture of
Polynomial Phase and Sinusoidal FM Signals

Pu Wang, Philip V. Orlik, Kota Sadamoto, Wataru Tsujita and Yoshitsugu Sawa

Abstract— This paper introduces a new coupled mixture of
polynomial phase signal (PPS) and sinusoidal frequency modu-
lated (FM) signal, motivated by real-world applications, e.g., con-
tactless linear encoders. Specifically, the coupling is introduced
to express the sinusoidal FM frequency as a function of the PPS-
related parameters. Given the coupling mixture, it generalizes two
existing models: 1) the pure PPS model and 2) the independent
mixture model. Performance bounds of parameter estimation
for the coupled mixture model are established in terms of the
Cramér-Rao bound (CRB). Unlike the pure PPS case, the derived
CRB shows its dependence on the PPS-related and sinusoidal
FM-related parameters due to the coupling mixture. On the other
hand, the derived CRBs for the PPS-related parameters are lower
than their counterparts of the independent mixture model, as the
sinusoidal FM frequency provides additional information on the
PPS parameters.

Index Terms— Parameter estimation, polynomial phase signal,
frequency modulation, Cramér-Rao bounds.

I[. INTRODUCTION

Parameter estimation of pure polynomial phase signals
(PPSs) from a finite number of samples is a fundamental
problem in many applications, including radar, sonar, commu-
nications, acoustics and optics [1]-[20]. A generalized signal
model is the independent mixture of PPS and sinusoidal
frequency modulated (FM) signal, also referred to as the
hybrid sinusoidal FM-PPS in the literature [21]-[27]. One
motivation to study this mixture signal comes from Doppler
radar systems. When a target is moving in a dynamic motion,
outputs at the matched filter can be modeled as a pure PPS
with the phase parameter associated to the kinematic param-
eters of the moving target. For instance, the initial velocity
and acceleration are proportional to the first-order and second-
order polynomial phase parameters, respectively. On the other
hand, rotating parts (e.g., rotating blades of a helicopter) and
target vibration introduce the sinusoidal FM component [21]—
[24]. With both effects, the matched filter outputs follow the
independent mixture signal model.

In this paper, motivated by real-world applications, e.g.,
contactless linear encoders with periodic reflectors, we pro-
pose a new coupled mixture of the PPS and sinusoidal FM
signal which further generalizes the two models mentioned
above. Specifically, the coupling is introduced to express the
sinusoidal FM frequency as a function of the PPS parameters.
Given the coupled mixture model, we derive the Cramér-Rao
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Fig. 1. The geometric configuration of linear encoder systems. The source
transceivers are mounted on a moving readhead with a distance to the scale
platform. On the scale platform, uniformly spaced bars are installed.

bound (CRB) for parameter estimation. On one hand, the
derived CRB is dependent on both PPS-related and sinusoidal
FM-related parameters, different from the pure PPS case where
the CRB is independent of the PPS-related parameters. On the
other hand, the derived CRB for the PPS-related parameters
are lower than their counterparts of the independent mixture
model, as the sinusoidal FM frequency provides additional in-
formation on the PPS-related parameters. Numerical examples
are also provided to compare the CRBs for different signal
models and to show the achievability of the derived CRB.

II. A COUPLED MIXTURE SIGNAL MODEL

This section reviews a specific application to motivate the
coupling between the PPS and the sinusoidal FM signal,
introduces the coupled mixture model, and compares it with
the two existing models.

A. Linear Optical, Electric and Magnetic Encoders

An encoder is an electromechanical device that can mon-
itor motion or position. Among others, optical, electric and
magnetic encoders are commonly used for high accuracy
motion and position measurements [28], [29]. It normally
consists of a stationary scale and a moving readhead, or
vice versa; see Fig. 1. The source transceivers are mounted
on the moving readhead with a distance of r to the scale
platform. Uniformly spaced reflectors, e.g., rectangular bars,
are installed on the scale platform to constitute a spatial period
with an inter-reflector spacing of h. Then the position and
speed of the moving readhead can be inferred from reflected
signals in different approaches. One of those approaches is
a phase detection approach which detects the phase from
the reflected signal. Generally, the reflected signals from the



spatially periodic linear scale can be written as

o(d) = Aejzw[%+mijl by sin(2mmd +¢’7n)+'¢0i| , 0
where A is the unknown amplitude, d is the axial position
index of the moving readhead, b,, > 0 and ¢,, are the
modulation index and, respectively, the initial phase of the m-
th sinusoidal FM component, M is the number of sinusoidal
FM components in the phase, and 1)y is the initial phase.
The first phase term is due to the phase change proportional
to the inter-reflector spacing of h. Therefore, the moving
distance and speed of the moving readhead can be inferred
from the change in the first phase term. Meanwhile, the
second term is, induced by the spatially periodic reflectors,
the motion-related sinusoidal FM component. From (1), we
have x(d) = xz(d + lh), where [ is an integer. That is the
moving readhead sees exactly the same reflected waveforms
at two axial positions which are at a distance of & apart from
each other.

With a sampling interval of AT and assuming that the read-
head moves at an initial velocity of vy and an acceleration of «,
we can transform the position index to the discrete-time index
via d = vt + at?/2|i—nar = vonAT + a(nAT)?/2,n =
ng, -+ ,ng + N — 1 with ng and N denoting the initial
sampling index and the number of total samples, respectively.
As a result, the discrete-time reflected signal is given as

jor |:110nAT+ah(nAT)2/2 +¢0]

x(n) =Ae
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Note that the sinusoidal FM frequency is now a function of the
motion-related phase parameter (e.g., vy and a) of the moving
readhead.

B. The Coupled Mixture of PPS and Sinusoidal FM Signal

For more dynamic motions of the readhead, higher-order
phase terms may appear in the reflected signal. For instance,
if the acceleration is time-varying, a third-order phase term
(on t3) may be required to model the reflected signal, i.e.,
d = wvot + at?/2 + gt3/6 where g denotes the acceleration
rate. To generalize the coupled signal model, we propose here
a coupled mixture of the PPS and sinusoidal FM signals:

Eoapn? | M .
g2 | 3 B+ X bmsin(2rmfo(ar, - ,ap)ntdm)
p=0 P m=1
z(n) = Ae

)
3)
where the fundamental sinusoidal FM frequency fy is now
coupled with the PPS phase parameters, a1, - - ,ap. Depend-
ing on applications, the coupling function fo(ai, -+ ,ap)
can be either nonlinear or linear with respect to {ap};f:l.
In the case of linear encoders, it is a linear function as
folar, -+ ,ap) = co 25:1 apnP~1/p! with ¢y denoting a
known scaling factor.

To see how the linear encoder example fits into the coupled

mixture, we can establish the following variable changes
between (2) and (3)

AT AT)?
bm = bma ag = ’(/}07 ay = Uoh ’ a2 = a( L ) ) (4)
voAT  a(AT)?
folar,az) = 2T 4 BT — (@ + asm/2)

with ¢g = 1 and a PPS order of P = 2.

To the best of our knowledge, such a coupled mixture model
of (3) has never been considered before in the literature. It is
distinct from the independent mixture model [21]-[27]
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where the FM frequency fy is independent of the PPS pa-
rameters {ap}lf):l. Second, it generalizes the pure PPS model

P

. a

j2m 3o kP
p=0 =

z(n) = Ae as a special case when b,, = 0.

I1I. CRAMER-RAO BOUNDS FOR THE COUPLED SIGNAL

The problem of interest is to estimate the motion-related
parameters {ap}f:1 from a finite number of noisy samples
y(n) = z(n) + v(n), where z(n) is given in (3) and v(n)
is assumed to be Gaussian distributed with zero mean and
variance o2. In certain applications, other parameters, e.g., A,
{b,, }*_, and ¢,,,, may be of interest as well. In the following,
we derive the performance bound in terms of the CRBs for
any unbiased estimator of these unknown parameters.

By defining the following vectors y =
[Ynos Yno+1s " s Uno+N—1]7 = x(0) + v where x an
v are similarly defined as y, and v ~ CAN(0,0%Iy), and
0 = [Nay,N2as, -~ ,NPap,ao, b1, - ,bar, ¢1,-++ , on]”
groups (P+2M +1) unknown real-valued phase parameters'.
For an unbiased estimator of 6, the CRB provides a lower
bound on the variance: cov(f) > F~!, where F is the
Fisher information matrix (FIM) whose entries involve the
derivatives of the log-likelihood function of the samples.

A. Exact CRBs

It is easy to see that y ~ CN (pu, ) = CN (x(0),0%1y)
where p denotes the mean and ¥ denotes the covariance
matrix. Note that 3 here is not a function of the parameters
6. To compute the FIM, we use the Slepian-Bangs formula
[30] for the following general expression

- [ Ologp(y|@) Ologp(y|€)
F,,=E { 2L - ©
B a“H —1811’ . _182 _162
—Qm{aeiz R S S

Since ¥ = 0?I and p = x(0), the FIM is simplified to

2 0x(9) 0x(0)
F, . = — .
J 02 " |: 892 89] :| (7)
Defining 7,,, = 2mcgb,, and with the following results,
0x,(0) e (1) M ™ 2n?
i c(n .
m = Ael 1 +mlz::177m COS ((bm (Tl)) jp'Np,

ITo better expose the derivation of CRBs, we assume the signal amplitude
A and the noise variance o2 are known. Later we will derive the joint CRBs
when the two parameters are unknown.



With the above equations, we can compute the exact FIM

0x,(0) Aeddeln) [ of dimension (P + 2M + 1) x (P + 2M + 1). Since we are
dag ¢ [727], more interested in the PPS parameters {a,}._,, we group the
02,(0) , o unknown parameters in the following way:
0 — Aedt () [72msin (¢5)'(n))] .
O 6=la”, A",
82;’5’(0) = A’ [j27b,,, cos (¢h'(n))] , a=[Nay,--- ,NPap]", B=lap,b",0"]". (18

Mip) = with b = [by,-++ ,bay]T and @ = [¢1, -+, dar]T. As a result,

where 1s the phase of x(n) and
¢C( ) P (n) O the overall FIM is partitioned into blocks:

2mmey Zp 1 p, + ¢, denotes the phase function of the

m-th sinusoidal FM component, we have
b F(60) = E‘%"" e ’ﬁ] (19)
2 oxt ox aB TBB
Fap,aq:ﬁ Npa. Aanta. 7p?q:1327"'?P, (8)
a N?Oay, ONYay where F o is a P x P square matrix with elements given by
2
21 412 M pta — -
S [ S| (27, Fecha = Fas pasizon o
lqlo
PO nen m=1 in (8), Fg g is a (2M + 1) x (2M + 1) square matrix with
P _ R oxf ox _ 82| Al? N ©) elements given by
0.0 day dagy o2 ’
oxtl ox F‘EQ’“O Faob P
By, = [ 30— B0 ] (10) Fsp=|Fopn Foo Fogl, (©29)
) X m m’ Fgo.¢ FE¢ F¢’¢
82| A ) ’ '
= (7'2 | > sin (¢’ (n)) sin (¢ (n)) , with Fayays [Foblmmts [F.glmm given by (9), (10) and
n;N (11)’ and [Fao,b]m7[Fao,¢]m7[FbA,qb]m,m’ iIl (15)s (16) and
P _ 2 o [0xT Ox (11 (17), respectively. And Fq g is a P x (2M + 1) matrix
Pt = 2 O O Firay Fap F
87('2|A|2bmbm/ M ™M ay,ao ai,b ai,p
= Z cos (¢ (n)) cos (dpr (1)) Fop= : : Co, (22)
Fapao = —3 [ oNva, aao] (12) " With F, a0, [Fa, blm and [Fo gl. given by (12), (13) and
N 2|A|2 M (14), respectively. With the block matrix inversion lemma, the
4 " \?  CRBs for estimating the PPS parameters are given b
=— 1+ Z T, COS (ngFM(n))] (—) g p g y
152 Z m )
po neN m=1 N R R ar 1 2
L2 ox" ox)_selaP " cov(a,) > CRB(a,) = (Fa’a - FaﬁFwFM) N
apsbm — 2 aNpap 8[) - p'0'2 ’ p,p
where the denominator of N?” is to scale the CRBs for o =
n\pP P T
X 14 N cos (bFM (n)) | sin (¢F™M(n (—) , [Nay, -+, N7 ap]" back to ay.
% Z ) ( ( )) N Remarks: 1t is clear that the derived CRBs are a function of
9 oxH  Ox 82| A[2b,, the SNR (i.e., |A|?/0?), the sampling indices [ng,--- ,ng +
Fopom = = = ) (14) N — 1], and the signal parameters including the PPS phase
o2 | ONPa, 0¢,, plo? ; .
" b parameters {ap}f;o and the sinusoidal FM parameters b,,
M EM n )” and ¢,,. Specifically, the FIM computations from (8) to (17)
X z@:\] 1+ Lz_:l T cos (¢ (n))] cos (¢t (n)) ( N/~ involve the PPS phase parameters {a,})_, via the phase
n m —- . M _ P P | f th _
9 ToxH 9 82| A2 function ¢;,"(n) = 2mmeo 32, apn?/p! + ¢m of the m
Foo b, = ﬁéR 3); 8bx ] = 770|2 | Z sin (¢))'(n)),  th sinusoidal FM component. It is worthy noting that such
L 0 m

neN an involvement of {ap}f;o in the computation of CRBs is

5) unique for the coupled mixture model. This effect has not

15 2 5 [oxfT ox 87r2|A|2bm M been observed in the literature for the cases of the pure PPS

ao,$m = 3 | Dag Db, o2 Z COb m (1 )) ’[2] and the independent mixture signal [26]. In both cases, the
nel (16) CRBs are not a function of the PPS parameters.

Fop o, — % foxH ox ] 7 (17 B. Joint CRBs for A and o>

o? ab"' P When the amplitude A and noise variance o2 are unknown,
8772|A| b Z sin (™ (n) cos (6™(n)) the joint CRB is shown to be decoupled, i.e., the cross-FIM

’ matrices Fg 4 = 0 and Fg,> = 0. And we have )y 4 =
2N/o? and F,2,. = N/o* which leads to CRB(A) =
where N = [ng, -, mo + N —1]. 2/(2N) and CRB(62) = o4 /N.

neN
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Fig. 2. The CRB as a function of SNR for the independent and coupled
mixture signals with M =1, P = 3, and N = 2048.

C. Connection to CRBs for Pure PPS
When b, = 0 and ¢fM(n) = 0, the coupled mixture model

m
reduces to the pure PPS model. In this case, the parameter set
includes only the PPS phase parameters 8 = [a”, b”]?" with
a = [ay, --,ap|T and b = [ag], and the FIM entries from
(8) to (17) are no longer a function of the PPS parameters

{ap}[_,. Specifically, we have

2 no+N—-1

_ 8n?|A] (n)P+q
ap,aq — 112 AT 9
plqlo = N
o _8mAR L 8n?AP [LREAC Y-
a0,d0 T 52 ’ ae00 T ple2 n_zn (N) ’
—=no

which agrees with the exact FIMs for the pure PPS when
ng = 0 [2, Egs. (13)-(15)] and when ng = —(N —1)/2 [5,
Eq. (3)]. As a result, when b, = 0, the derived CRBs in this
paper reduce to the corresponding ones for the pure PPS.

IV. NUMERICAL RESULTS

In the following, we compare the derived CRBs with the
counterparts for the independent mixture signal and show the
achievability of the derived CRBs.

A. Comparison to CRBs for The Independent Mixture Signal

We consider a mixture signal of a single sinusoidal FM
component (M = 1) and a PPS with order P = 3. Other
parameters are A = 1, ag = 0, a; = 0.15, ay = 1.3889-1074,
az = 13022 - 1075 b = 0.05, ¢y = 0, ¢g = 0.1
and N = 2048. For the coupled mixture signal of (3), the
sinusoidal FM frequency is determined by fo(a1,aq,a3) =
co(ar + aan/2 + azn?/6), while for the independent mixture
signal fj is chosen to be 0.0676. Fig. 2 compares the CRBs
as a function of SNR for the two mixture models. It is
seen that, for estimating the PPS parameters {a, as, as}, the
CRBs for the coupled mixture of (3) (blue curves) are smaller
than those for the independent mixture of (5) (red curves),
which suggests that extracting the information of a,, from both
the PPS and FM components may lead to better estimation
accuracy than conventional approaches that rely on the PPS
component only. For estimating the sinusoidal FM index b, the
two CRBs are very close to each other. Note that the CRBs
for estimating {a,} in Fig. 2 can be translated to the CRBs
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Fig. 3. The CRBs versus the number of samples for the independent and
coupled mixture signals with M = 1, P = 3, and SNR = 20 dB.
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........

]

Fig. 4. The CRBs are achievable by a phase unwrapping estimator for
estimating a2,a; and ao of a coupled mixture signal with M = 1 and
P = 2 at high SNRs when N = 512.

for estimating physical parameters, e.g., the initial velocity vg
and acceleration a in (4), by applying a proper scaling factor
of h?/(AT)?».

Then, we fix SNR = 20 dB and vary the number of samples
N with ny = 0. As shown in Fig. 3, the CRBs become smaller
as IV is larger. Similarly, the CRBs for estimating a,, for the
coupled mixture of (3) are smaller than the counterparts for
the independent mixture of (5).

B. The Achievability of CRBs

The maximum likelihood estimate (MLE) is known to
achieve the CRB asymptotically, but it involves a (2M + P)-
dimensional search and, hence, it is infeasible to numerically
evaluate its mean squared error (MSE). Instead, we implement
a simple phase unwrapping estimator. Fig. 4 shows, with
500 Monte-Carlo runs, the measured MSEs for estimating the
PPS phase parameters {ag, a1, as} of a coupled mixture with
M =1and P =2 when N = 512. It is seen that the measured
MSE:s achieve the corresponding CRBs when SNR > 19 dB.

V. CONCLUSION

In this paper, we have introduced a new coupled mixture
model of the PPS and sinusoidal FM signals. The coupling
effect is seen from the fact that the sinusoidal FM frequency
is a function of the PPS phase parameters. Given the new
model, we have derived the CRBs for estimating unknown
parameters. It has been found that, due to the coupling effect,
the derived CRBs are a function of the PPS phase parameters,
which is different from the cases of the pure PPS and the
independent mixture signal.
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