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Abstract

Recently, a deep beamforming (BF) network was proposed to predict BF weights from phase-
carrying features, such as generalized cross correlation (GCC). The BF network is trained
jointly with the acoustic model to minimize automatic speech recognition (ASR) cost function.
In this paper, we propose to replace GCC with features derived from input signals’ spatial
covariance matrices (SCM), which contain the phase information of individual frequency
bands. Experimental results on the AMI meeting transcription task shows that the BF
network using SCM features significantly reduces the word error rate to 44.1% from 47.9%
obtained with the conventional ASR pipeline using delay-and-sum BF. Also compared with
GCC features, we have observed small but steady gain by 0.6% absolutely. The use of SCM
features also facilitate the implementation of more advanced BF methods within a deep
learning framework, such as minimum variance distortionless response BF that requires the
speech and noise SCM.
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Abstract—Recently, a deep beamforming (BF) network was
proposed to predict BF weights from phase-carrying features,
such as generalized cross correlation (GCC). The BF network
is trained jointly with the acoustic model to minimize automatic
speech recognition (ASR) cost function. In this paper, we propose
to replace GCC with features derived from input signals’ spatial
covariance matrices (SCM), which contain the phase information
of individual frequency bands. Experimental results on the AMI
meeting transcription task shows that the BF network using
SCM features significantly reduces the word error rate to 44.1%
from 47.9% obtained with the conventional ASR pipeline using
delay-and-sum BF. Also compared with GCC features, we have
observed small but steady gain by 0.6% absolutely. The use
of SCM features also facilitate the implementation of more
advanced BF methods within a deep learning framework, such
as minimum variance distortionless response BF that requires
the speech and noise SCM.

I. INTRODUCTION

Far-field ASR remains a challenging research topic, even
with neural network based acoustic model and a large amount
of training data. It attracts considerable attentions from the
speech processing community, and several benchmarking tasks
have been devoted to this topic, such as the REVERB Chal-
lenge [1], CHiME-3 speech source separation challenge [2],
and the 2015 Jelinek Summer Workshop on Speech and
Language Technology [3]. Although considerable progress has
been made in the past few years, the performance of state-
of-the-art ASR systems is still poor on far-field recordings,
e.g. the WER on the AMI meeting transcription task [4]
is still around 50% even when 8-channel beamforming and
neural network based acoustic model have been used [5, 6].
Beamforming is an important technique to improve far-field
ASR performance as it allows us to utilize spatial information
to separate target signal and interferences, in addition to
spectral and temporal information.

Traditional beamforming methods [7] are usually optimized
with signal level criteria that are not directly related to
the ASR performance. For example, the delay-and-sum (DS)
beamforming aligns the input channels to cancel their phase
difference w.r.t. the target signal and sum the channels. The
processing reinforces the target signal more than the inter-
ference from other directions and hence improve signal-to-
noise ratio (SNR). The MVDR beamforming [8] also takes

into consideration the spatial characteristics of the interference
and is able to achieve higher SNR improvement. Compared to
MVDR beamforming, the multi-channel Wiener filter [9] sac-
rifices some distortions on the target signal to achieve higher
noise attenuation. Both MVDR and multi-channel Wiener filter
are maximizing output SNR, which is a meaningful objective
function but not directly related to the ASR’s evaluation
metrics, such as WER.

Recently, several learning-based beamforming methods are
proposed for the ASR task [5,10-14]. These methods usu-
ally require a training data set from which prior knowledge
of speech signal can be extracted and then used in deter-
mining the beamforming parameters. An early study is the
LIMABEAM [14] that applies filter-and-sum (FS) beamform-
ing on multi-channel waveforms and estimates the beamform-
ing weights by maximizing the likelihood of the features
extracted from the enhanced signal. Gaussian mixture model
(GMM) based acoustic model is used to evaluate the likelihood
of the enhanced features and guide the beamforming weight
estimation. In [10, 11,15, 16], neural network based acoustic
models are trained directly on multi-channel waveforms. The
first layer of the networks is temporal convolution layer that
takes in multi-channel time domain signals. These temporal
convolution filters usually have both frequency and spatial
location selectivity. In other words, the network learns a
set of filterbanks, each looking at a specific direction-of-
arrival (DOA) and frequency band. These filters are trained
directly on the ASR’s cost function and shown to outperform
traditional beamforming methods. In two other studies [12,
17], neural network is used to predict whether a time frequency
bin is dominated by target speech or not, and this information
is used to estimate spatial covariance matrices of speech and
noise which in turn are used to determining beamforming
parameters. This method could also be combined with the
acoustic model to achieve the joint training of acoustic model
and mask estimation.

While the work in [10,11,15,16] uses very few domain
knowledge of beamforming and relies mainly on the data-
driven principle to perform spatial filtering, the deep beam-
forming networks proposed in [5] aims more straightforward
applications of traditional beamforming. The multi-channel



waveforms are first used to generate phase-carrying features
derived from generalized cross correlation (GCC) [18]. Then
a feedforward DNN maps the GCC features to complex filter-
and-sum beamforming weights directly in frequency domain.
Spatial filtering is carried out by applying the predicted
weights to the input signals in the frequency domain in the
same way as traditional beamforming. Features are extracted
from the enhanced power spectrum and used for DNN based
acoustic model. Thus, the whole pipeline of signal process-
ing from waveforms to acoustic modeling are built into a
computational graph, and the beamforming weight predicting
DNN and the acoustic model DNN are trained jointly on
the ASR cost function. Experimental results on the AMI
meeting transcription task shows significant ASR performance
improvement was obtained by the beamforming network over
the DS beamforming.

In this paper, we improve the deep beamforming network
[5] by using features derived from spatial covariance matrices
to replace the GCC features. This is motivated by the fact
that many beamforming methods, such as MVDR beamform-
ing, use spatial covariance matrix to determine beamforming
weights. GCC is time domain features and captures the overall
time difference of arrival (TDOA) between microphones.
Spatial covariance features, on the other hand, captures the
phase differences at individual frequency bins. To make the
spatial covariance features suitable for neural network inputs,
we propose to normalize the covariance matrices by the
average power of received signal at each time frequency bin.
We also propose several ways of reducing the number of
feature dimensions. The main contribution of this paper is to
enable the use of spatial covariance features in a beamforming
network, which can also achieve better ASR performance than
using GCC features on the AMI meeting transcription task.

The rest of this paper is organized as follows. In section
II, we briefly review the beamforming network approach and
the extraction of GCC features. In section III, we describe the
extraction of spatial covariance matrix features and provide
theoretical connection to the GCC features. In section IV, we
present the experimental settings and results on the AMI task.
Finally, we conclude the study in section V and discuss about
future research directions.

II. REVIEW OF DEEP BEAMFORMING NETWORKS USING
GCC FEATURES

In this section, we briefly review the beamforming network
proposed in [5]. The system diagram is shown in Fig. IL.
From the multi-channel input speech signals, we generate both
the GCC features and short-time Fourier transform coeffi-
cients. The GCC features are used to predict the complex-
valued beamforming weights in the frequency domain (filter-
and-sum) by using a feedforward DNN. The beamforming
weights are then used to filter the input Fourier coefficients
in the beamforming module to produce the enhanced single-
channel Fourier coefficients, which are used to generate log
Mel filterbanks for acoustic modeling. The main advantage
of the beamforming network over traditional beamforming
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Fig. 1. System diagram of the joint training of beamforming network and
acoustic model network. The two shaded boxes denote neural networks that
are trained together, while other blocks denote deterministic processing.

techniques is that both the beamforming and acoustic modeling
networks can be optimized together using the ASR cost func-
tion. Therefore, the beamforming network has the potential to
perform better than traditional methods for the ASR task.

A. Extraction of GCC features

Similar to traditional methods, the beamforming network
needs time delay information between microphones to predict
the beamforming weights. In [5], GCC is adopted as features
for the beamforming network. We briefly review the extraction
of GCC features in this section.

For signals recorded by two microphone channels y;[n] and
y;[n], the cross correlation in the frequency domain can be
computed using the GCC-PHAT method [18] by

_ Y(NYr ()
anan]

where Y;(f) and Y;(f) are the Fourier transform of y;[n] and
y;[n] at frequency bin f, respectively. Y;*(f) is the complex
conjugate of Y;(f). The cross correlation in time domain can
be obtained by

Ri () = IFT(Gi;(f)) @

where IFT() denotes the inverse Fourier transform. In classic
methods, we can estimate the TDOA between the microphones
7 and j by finding the peak of the cross correlation function
and use it to determining the beamforming weights. For
beamforming network, we can directly use the correlation

Gi;(f) (D
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Fig. 2. Predicting beamforming weights in the frequency domain by using a
DNN. An example weight map predicted by the network is shown.

function as the input features to avoid the estimation of TDOA
which may be erroneous.

In practice, only the central part of the correlation function
corresponding to the +7,,,, samples are used as features,
where 7,4, 1S the maximum possible delay between micro-
phones in the array in terms of samples. For the array used
in this paper, Tinqe = 10, hence, a 21 dimensional feature
vector is extracted from each microphone pair. To improve
the robustness of the features, we can include the feature
vectors of all microphone pairs. For example, if we have 8
microphones, we will have C(8,2)=28 pairs. As a result, the
final feature dimension for the beamforming weight prediction
is 21x28=588. For more details of GCC feature extraction,
please refer to [5, 19].

B. Predicting Beamforming Weights in Frequency Domain

The details of the beamforming network are illustrated in
Fig. II-A. The phase features (i.e. the GCC features in this
section) are extracted from the input waveforms using a 0.2s
window length and 0.1s window shift, resulting in 10Hz frame
rate. A feedforward DNN is used to map the phase features to
beamforming weights in the frequency domain. For example, if
there are 8 channels, the sampling rate is 16 kHz, and the FFT
length is 512, the weight vector will have 257x8x2=4112 real
values in every frame. Mean pooling is used to take the average
weight vectors from an utterance as we assume that the speaker
does not move within one utterance. Readers are referred to
[5] for more details of beamforming network description.

III. SPATIAL COVARIANCE FEATURES

GCC captures the TDOA information in time domain. In
this section, we describe frequency domain phase features
extracted from spatial covariance matrix and discuss about the
connection between these two types of features.

A. Computing Spatial Covariance Matrix

The spatial covariance matrix of the observed multi-channel
signals at a time frequency bin is defined as

S(t, f) = Ely(t, f)y" (¢ )] 3)

where ¢ is the frame index, F[z] denotes the expectation
of random variable z, and ¥ denotes Hermitian transpose.
y(t, f) = [Yi(t, f), ..., Ys(t, £)]T is the vector of observed
signals of all channels in frequency domain. The frame length
and shift used in (3) are 0.025s and 0.01s respectively, which
are shorter than those used for GCC computation. In practice,
we assume that speech statistics are slowly varying and
estimate the spatial covariance matrix as a moving average:

c=L
S =g O Wtre e N @
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where L is the context size. In this study, we use L = 10
to cover 21 contextual frames. Hence, the spatial covariance
matrix is estimated from slightly more than 0.21s of input
speech if the frame shift is 0.01s. This context span is similar
to the 0.2s window used to compute the GCC features.

The diagonal elements of the spatial covariance matrix are
the power spectrum of the signals at different channels and
hence carry the spectral information of the inputs. The off-
diagonal elements are the cross spectrum between channels, so
they also contain the phase difference between channels and
the spatial information of the target signal and interference.
In the MVDR beamforming formulation, the beamforming
weights can be solely determined by two types of spatial
covariance matrix, i.e. the noise covariance estimated from
noise dominant time frequency bins and the noisy speech co-
variance estimated from speech dominant bins [9]. Therefore,
the spatial covariance matrix of the input signals contains the
necessary information for neural networks to predict beam-
forming weights. In the following sections, we will describe
how to extract suitable features for the beamforming network.

B. Normalization by Average Power Spectrum of Channels

Although the spectral information contained by the spatial
covariance matrix (e.g. the power spectrum at the diagonal
elements) may be useful for beamforming weight prediction,
it causes different scales in different time frequency bins
as illustrated in Fig. III-B. As our objective is to predict
beamforming weights which are mainly determined by the
spatial information, we need to reduce the variation due
to spectral information and make spatial information more
salient. In this paper, we propose to normalize the elements
of the covariance matrix by the average power of the signal at
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Fig. 3. Effect of normalizing spatial covariance by average power spectrum.
The top figure shows the spatial covariance matrices (imaginary part only) of
two randomly selected time frequency bins before normalization. Each spatial
covariance is an 8x8 matrix as we used 8 microphones to generate this figure.
Due to the very different speech power in these two bins, the values of the
spatial covariance matrices have very different scales. The spatial covariance
after normalization is shown in the bottom figure, and similar scale is observed
in the two bins. The elements in the upper triangular matrix within the red lines
as shown in the bottom right figure are used as the features for beamforming
network.

a time frequency bin. Specifically, the normalized covariance
matrix is obtained by

St f) = 2(t, £)/P(t, f) )

where ]3(157 f) is the estimated average power of the channels
and estimated as

J
P(t, f) = % > a3t f) ©)
j=1

where 6]2 (t, f) is the j** diagonal element of the covariance
matrix and represents the power of the received signal at chan-
nel j. The effect of the normalization is shown in Fig. III-B.
After the normalization, the values of the two time frequency
bins are similar, making it easier for the DNN to learn.

C. Extracting Features from Spatial Covariance

After the normalization, the upper triangular matrix el-
ements (excluding the diagonal elements) as illustrated in
Fig.III-B are used as input features for beamforming network.
These elements mainly capture the phase differences of chan-
nel pairs. For each spatial covariance matrix, we construct a
feature vector by stacking the real and imaginary values of
the selected elements. The dimension of the feature vector is
2*C(J,2), where C(J,2) is the number of unique channel pairs.
For example, if J=8, a feature vector of 56 dimensions will be
extracted from each spatial covariance matrix.

For each frame, there are totally K frequency bins, and
hence K spatial covariance matrices. The value of K is

typically 129 and 257 for 8 kHz and 16 kHz sampling rates,
respectively. If we simply concatenate the feature vectors of
all frequency bins, the final feature vector for each frame
will be huge. For example, if K=257 and J=8, we will have
a 56x257=14,392 dimensional feature vector. Such a high
dimensional feature vector will cause the network to overfit to
the training data easily and also introduces high computational
cost.

To deal with the large number of potential features, we
proposed three methods of dimension reduction listed as
follows:

1) Sampling method Use only spatial covariance matrices
of frequency bins sampled uniformly from the frequency
axis. For example, if we use only 1 frequency bin
from every 10 consecutive frequency bins (denoted as
10:10:257 following the Matlab notation), we can reduce
the number of features by 10 times.

2) Row method Take only the first row of the spatial co-
variance matrix which contains the phase delay between
the first channel (used as the reference channel) and all
other channels. The number of features from each spatial
covariance matrix is reduced from 2*C(J,2)=J*(J-1) to
2*(J-1).

3) Filterbank method First sum neighboring frequency
bins into filterbanks, then extract features as described
above. For example, if we merge every 5 frequency bins
into one filterbank, we can reduce the number of features
by 5 times.

It is not easy to see which of the three methods is the best way
of building feature vectors from spatial covariance matrices.
They will be compared experimentally.

D. Comparison of GCC and Spatial Covariance Features

The features extracted from the spatial covariance matrices
and the GCC features are closely related. The GCC in the
frequency domain shown in (1) is a cross-spectrum between
channel i and j and normalized by the product of magnitude
in the two channels. The (i,j)*" element of spatial covariance
matrix 3(¢, f) is also a normalized cross-spectrum between
channel i and j, while the normalization term is the average
power of all channels. Hence, the GCC in frequency domain
carries similar information as the spatial covariances. The
major difference between the GCC features and the spatial
covariance features is that the GCC features are converted
back to time domain and measures the time delay between
microphone pairs in terms of number of samples. The phase
information in all frequencies is summed together. On the
other hand, the spatial covariance features are extracted di-
rectly from the frequency domain and measure the phase delay
in individual frequency bins or filterbanks. Hence, we can
loosely say that the GCC features focus on the time resolution
while the spatial covariance features focus on the frequency
resolution. Another difference is that GCC is usually extracted
using long windows, e.g. 0.2s, while spatial covariance is
estimated by taking the average over many shorter windows,
e.g. 0.025s.



IV. EXPERIMENTS

A. Settings

The beamforming network with spatial covariance features
is evaluated on the AMI meeting transcription task. We used
both simulated and real array signals for the training of the
beamforming and acoustic model networks. The real and
simulated data share the same array geometry, i.e. a circular
array with 8 microphones and 20cm diameter. The sampling
rate is 16 kHz. The simulated data are generated by convolving
single-channel clean speech utterances with artificial room
impulse responses (RIRs). The clean utterances come from
the training set of the WSJICAMO training set [20] which
contains 7,861 sentences. The RIRs are generated by using
the image method [21] with various room sizes and T60
reverberation times. Three room sizes are used, including
small, medium, and large rooms. The T60 reverberation time
is randomly sampled from 0.1s to 1.0s. After the reverberant
array signal is simulated, additive noise samples from the
REVERB Challenge corpus [1] are added at SNR levels
randomly chosen from 0dB to 30dB. In total, 90 hours of
simulated array data are generated.

The real array signals are from the multiple distant micro-
phone (MDM) scenario of the AMI meeting corpus [4]. The
training set contains about 75 hours of data, while the eval
set contains about 8 hours of data. Besides the array signals,
the AMI corpus also contains close-talk microphone data that
were recorded in parallel with the array signals. The close-
talk microphone data is used to train and test another acoustic
model to show the upper bound of beamforming and other
speech enhancement techniques.

There are two steps in the training of the beamforming
networks. In the first step, we teach the network to perform DS
beamforming. This is achieved by training the beamforming
network to minimize the mean square error between the
predicted beamforming weights and the ideal DS weights in
the frequency domain. The first step is also called initialization
step and carried out on the simulated data where we know
the true DOA and hence the ideal weights. The weights of
the beamforming network are initialized as Gaussian random
noise. In the second training step, the beamforming network
and the acoustic model network are trained together on the
training set of the AMI task to minimize the cross entropy (CE)
cost function of ASR. Therefore, the second step optimizes
the beamforming network specifically for ASR. According
to our previous study [5], the initialization step is necessary
to achieve successful training of beamforming network. Both
training steps are implemented in Matlab.

After the beamforming network is trained, it is used to
generate enhanced filterbank features. The features are then
used to train the DNN acoustic model from scratch using the
Kaldi speech recognition toolkit [22], first using the CE cost
function, then using the sequential cost function. For ASR
decoding, a trigram language model trained from the word
label of the 75 hours training data is used.

TABLE I
SPEECH RECOGNITION PERFORMANCE (WER%) ON AMI EVAL SET.
“DIM” IS THE SIZE OF FEATURE VECTORS OF THE BEAMFORMING
NETWORK. “COST” IS THE COST FUNCTION USED TO TRAIN THE
NETWORKS: “CE” IS CROSS ENTROPY COST OF CLASSIFYING FRAMES
INTO PHONE STATES OF ASR, AND “MSE” IS THE MEAN SQUARE ERROR
BETWEEN THE PREDICTED AND IDEAL DS BEAMFORMING WEIGHTS. FOR
THE DETAILS OF THE DIFFERENT FEATURE TYPES, PLEASE SEE THE
DESCRIPTION IN SECTION IV-B.

Methods BF Network Training Co.nfigurations WER (%)
Features Dim Cost

IHM - - - 25.5
SDM1 - - - 53.8
DS - - - 47.9
GCC 588 CE 44.7
SpaCov 10:10:257 1400 MSE 46.4
sample CE 44.7
SpaCov 10:10:257 1657 MSE 46.3
BF sample + logSpec CE 447
networks SpaCov 5:5:257 MSE 46.1
sample 2856 CE 44.4
SpaCov 5:5:257 MSE 45.9
filterbank CE 44.1
SpaCov 2:2:257 row 1792 MSE 46.3

B. Results

The word error rate (WER) on the eval set of the AMI cor-
pus is shown in Table I. For comparison purpose, the perfor-
mance of close-talk microphone (IHM), far-talk microphone
(SDM1), and delay-and-sum beamforming are also shown.
From the table, the BF network using GCC features and cross-
entropy cost function obtains a WER of 44.7%, which is
significantly lower than the DS beamforming’s 47.9%. This
result shows the advantage of the BF network which can be
trained to optimize ASR results. The rest of the rows show
the results obtained by using BF network with various kinds
of spatial covariance features.

o Sampling method “SpaCov 10:10:257 sample” stands
for we take 1 frequency bin’s spatial covariance out of
every 10 bins. The number of features in this case is
2C(8,2)x25=1400. It is observed that when using CE cost
function, the results obtained is the same as that with the
GCC features. If we double the number of selected bins
in “SpaCov 5:5:257 sample”, we obtain improvements in
WER with both MSE and CE cost functions.

« Sampling + log spectrum In “SpaCov 10:10:257 sample
+ logSpec”, we added 257 dimensions of average log
spectrum of all frequency bins. The results obtained
are similar to that without using log spectrum. This
suggests that the spectral information, as represented by
the log spectrum, is not very useful for determining the
beamforming weights at the current network. Hence, we
do not use log spectrum in the rest of the experiments.

« Filterbank method In “SpaCov 5:5:257 filterbank™, we
first average the spatial covariance matrices of every
5 frequency bins, then extract features. Although the
number of features are the same as that in “SpaCov



5:5:257 sample”, the WER obtained with the filterbank
method is consistently lower than that obtained by the
sampling method. This shows that the filterbank method
is a more reliable way to extract spatial information for
beamforming, perhaps due to the fact that all frequency
bins information are used.

« Row method In “SpaCov 2:2:257 row”, we take only the
first row of each spatial covariance matrix from selected
frequency bins. The WER obtained is not significantly
better than the “SpaCov 2:2:257 row” although more
frequency bins are used. This may suggest that it is
important to take the phase information of all channel
pairs for robustness.

From the results in Table I, we can conclude that the
filterbank method of extracting spatial covariance features is
the most effective. With the best spatial covariance features,
the beamforming network achieved 44.1% WER, which is
lower than the 44.7% obtained with the GCC features. The
results show that spatial covariance features are an alternative
choice for building beamforming network.

V. CONCLUSIONS

In this paper, we improved the deep beamforming network
by using spatial covariance features to replace GCC features.
Unlike the GCC features that capture the TDOA information
of microphones in the time domain, the spatial covariance
features capture the phase differences of microphones at
different frequencies. Three methods are proposed to extract
features from spatial covariance matrices and the filterbank-
based feature extraction method is found to perform the best
in experiments. Moderate and consistent improvements are
observed by using spatial covariance features than using GCC
features for beamforming network.

Currently, the beamforming network is initialized by the
DS beamforming. In the future, we will investigate the use
of beamforming network to implement more advanced beam-
forming. For example, the MVDR beamforming relies on both
the noise and speech SCM to determine the beamforming
parameters. A beamforming network with both speech and
noise covariance information could perform better.
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