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Abstract

In contrast to still image analysis, motion information offers a powerful means to analyze
video. In particular, motion trajectories determined from keypoints have become very pop-
ular in recent years for a variety of video analysis tasks, including search, retrieval and clas-
sification. Additionally, cloud-based analysis of media content has been gaining momentum,
so efficient communication of salient video information to perform the necessary analysis of
video at the cloud server is needed. In this paper, we propose a novel graph transformation
to efficiently represent the keypoint trajectories, motivated by the fact that keypoints are dis-
tributed irregularly across the images. Compared to conventional DCT-like transformation,
it is easier for graph transform to compact the energy and make the coding efficiently. Ex-
perimental results on several popular datasets including Stanford MAR, Hopkin155, KITTI,
etc. demonstrate a significant rate saving between 26% and 42% with our proposed trajec-
tory coding approaches relative to a DCT based transformation approach, provided that the
coding errors are between 2 pixels to 4 pixels.
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ABSTRACT

In contrast to still image analysis, motion information offers a
powerful means to analyze video. In particular, motion trajec-
tories determined from keypoints have become very popular
in recent years for a variety of video analysis tasks, including
search, retrieval and classification. Additionally, cloud-based
analysis of media content has been gaining momentum, so ef-
ficient communication of salient video information to perform
the necessary analysis of video at the cloud server is needed.
In this paper, we propose a novel graph transformation to ef-
ficiently represent the keypoint trajectories, motivated by the
fact that keypoints are distributed irregularly across the im-
ages. Compared to conventional DCT-like transformation, it
is easier for graph transform to compact the energy and make
the coding efficiently. Experimental results on several popu-
lar datasets including Stanford MAR, Hopkin155, KITTI, etc.
demonstrate a significant rate saving between 26% and 42%
with our proposed trajectory coding approaches relative to a
DCT based transformation approach, provided that the coding
errors are between 2 pixels to 4 pixels.

Index Terms— Keypoint trajectory, video analysis, inter-
frame prediction, graph transformation, CDVA

1. INTRODUCTION

For image analysis and understanding tasks, it is common
to identify and extract keypoints with accompanying feature
descriptors in an image. Such descriptors need to be invari-
ant to translation, rotation, scaling and illumination so as
to efficiently and robustly recognize objects and/or scenes,
e.g. scale-invariant feature transform (SIFT) [1], speeded-up
robust features (SURF) [2], histogram of oriented gradients
(HoG) [3] [4], etc. For applications that perform image anal-
ysis tasks over cloud servers, the feature descriptors need
then to be transmitted over networks and hence a require-
ment arises to efficiently code those descriptors. Compact
Descriptor for Visual Analysis (CDVS) is an ISO/IEC stan-
dard addressing such a compression need that was released
recently [5]. One limitation of this standard is that it only
handles the coding of descriptors associated with a single
image frame.

Compared to image analysis, the motion of objects in a
scene is very important for video analysis problems, such
as object tracking, action recognition /detection [6], mobile
robotics [7] and autonomous driving, as well as motion seg-
mentation [8]. Similar to image analysis schemes that are
based upon keypoints, motion trajectories are often deter-
mined for keypoints; the coding of these keypoint trajectories
for the purpose of enabling efficient video analysis is the
primary focus of this paper.

Earlier work that was done in the context of MPEG-7 de-
fined several types of motion descriptors, that described cam-
era motion, motion activity for video segments, as well as
motion trajectories for regions of the scene [9]. The MPEG-
7 motion trajectory descriptor was fairly high-level in that a
single trajectory was associated with one object of the scene.
Since the number of objects in a scene usually is rather lim-
ited, it was not demanding to efficiently code each trajectory.

A naive method to represent the descriptors extracted for
a video is to treat each image independently. As the approach
does not exploit the similarities among the features from suc-
cessive images frames, it would lead to a very redundant rep-
resentation. One approach to remove such redundancy is to
make use of the motion of those descriptors through the video
sequence via an affine transform between neighboring pic-
tures [10] [11]. However, those methods are limited in using a
single affine transformation which may oversimplify the mo-
tion for many use cases, thereby reducing the accuracy of the
analysis results.

Low-rank non-negative matrix factorization [12] demon-
strated the capability to perform object/scene clustering using
a small percentage of visual descriptors. Hence, if all de-
scriptors from an image have been coded, no significant bits
are expected to code their corresponding visual descriptors in
the successive image frames. However, this approach was not
able to provide a representation for motion over time, which
is the major motivation of our work.

In our work in [13], a framework was proposed to rep-
resent keypoint trajectories across pictures of a video from
utilizing interframe prediction. In this paper, we extend our
previous work by appending a novel graph transformation for
efficient compression of the motion trajectories to support a
good range of video analysis tasks.
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Fig. 1. System diagram [13]

The remainder of the paper is organized as follows. The
next section reviews the overall system framework proposed
in [13]. Section 3 proposes a graph transform to efficiently
encode the trajectory shapes. Section 4 presents experimental
results comparing the proposed methods against a benchmark
method using DCT transform to show the superiority of the
proposed methods. Finally, Section 5 provides concluding
remarks.

2. SYSTEM OVERVIEW

As a low-level motion information, keypoint trajectories are
useful for many high-level motion analysis tasks. To the best
of our knowledge, there is no work done to efficiently com-
press the keypoint trajectories before our previous work [13].

In a typical scenario as shown in Fig. 2, trajectory infor-
mation for each keypoint is extracted and then encoded at the
client device. We rely on existing methods to generate the
keypoint trajectories. At the cloud server, the keypoint tra-
jectories are reconstructed then fed to a motion-based video
analysis module to perform the desired video analysis tasks.

A merit to the above framework is that such a video anal-
ysis system could be compatible with the image descriptors
and analysis systems, where the descriptors associated with
key pictures are coded in a conventional way. Further, a Group
of Pictures (GOP) structure for every n pictures is composed
of a key picture and several other non-key pictures.

More formally, a keypoint trajectory is represented by a
sorted set of positions over time,

{p(ti) = (pz(ti)apy(ti»v t; € {tl,tg, --7tn} } (1)

Assume that there are m keypoints with associated tra-
jectories. Let p¢, ¢ € [1,m] denote the position in the c-th
trajectory. As the trajectory represents the travel path of a key-
point, the associated feature descriptors of the same keypoint
in the subsequent picture are likely unchanged and would be
skipped for actual coding. Therefore, the major challenge to
extend the still image analysis toward video analysis is on the
coding {p°(t;), ¢ € [1,m], i € [2,n]}, given picture ¢, as a
key picture that has been previously coded. In addition, let p
denote the reconstructed trajectory from a coded bitstream.

The major contribution in [13] was to code the keypoint
trajectories in a differential way instead of coding their abso-
lute positions. As a continuation of our previous work, in the
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next section, we propose graph transformation for efficiently
represent the residual trajectories.

3. GRAPH TRANSFORM CODING

3.1. General Graph Transform Coding

The field of the graph-based signal processing is emerging in
recent years [14]. An undirected graph G = (V, E) consists
of a collection of nodes V' = {1,2,..., N} connected by a
set of links E = {(¢, j,w;;)}, 4,5 € V where (¢, j,w;;) de-
notes the link between nodes ¢ and j having weights w;;. The
adjacency matrix W of the graph is an N x N matrix, the
degree d; of a node i is the sum of link weights connected
to node ¢. The degree matrix D := diag{d;,ds,...,dn}
is a diagonal matrix, and the combinatorial Laplacian ma-
trix is £ := D — W. The normalized Laplacian matrix
L := D '/2£D~'/2? is a symmetric positive semi-definite
matrix. Therefore, it has eigendecomposition L = UAU?,
where U = {uy, ..., uy} is an orthogonal set of eigenvectors
and A = diag{\i,...,\n} is its corresponding eigenvalue
matrix.

The eigenvectors and eigenvalue of the Laplacian matrix
provide a spectral interpretation of the graph signals. The
eigenvalues {\1, ..., Ay} can be treated as graph frequencies
and are always situated in the interval [0, 2] on the real line.

A graph Fourier transform (GFT) is defined as a projec-
tion of a signal x onto the eigenvectors U of the graph:

y :=U'x. (2)

Since a graph spectral domain is introduced with GFT, it
is possible to utilize it for transformation coding on a signal.
Supposing ¢ to be the quantization step, we have it applied on
the graph coefficients y,

y = round(y/q), ©)

where round(-) converts a floating value to its closest integer
value and y is finally entropy coded to produce the bitstream.

On the decoder side, the signal x can be reconstructed
after de-quantization,

¥y =yaq, “4)

and inverse GFT transformation,

% = Uy. 5)

3.2. Graph Transform for Keypoint Trajectory Coding

As described in Section 2, reference images are used to pre-
dict the keypoint location of a trajectory in a non-key image,
that is, instead of coding p(¢;) directly, but coding its gradient
v(t;) relative to a reference image,

V(ti) = p(ti) - f’(tr)v (6)
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Fig. 2. k-NN graph built on keypoint trajectories, with k = 3

where t; is the current image and ¢, corresponds to its ref-
erence image. Note that the locations from the reference ¢,
are selected as its reconstructed values to ensure that the en-
coding process will use the same predictor as in the decoding
process.

Because the keypoint trajectories typically distribute ir-
regularly within an image, one could expect a traditional lin-
ear transform, e.g. DCT, may be less efficient if being uti-
lized. As an extension of traditional discrete signal process-
ing from linear to general graphs, graph signal processing
provides special benefits when dealing with points in feature
spaces that typically reside on an irregular grid. On the con-
trary, previous work in [15] used graph on compression of
image/video signal that reside on a regular grid. Here, we are
motivated to explore using a novel graph based transform to
code keypoint trajectories.

We first propose to build a graph based on the trajectory
locations in the reference image. Each keypoint in the ref-
erence image would be treated as a vertex in the constructed
graph and is then connected to its k& nearest keypoints. Eu-
clidean distance d;; between connected keypoints ¢ and j is
calculated to determine the edge weights, as follows,
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where o controls the sensitivity of graph weights relative to
Euclidean distances. Once the graph is constructed, the GFT
transform U is determined as the eigenvectors of graph Lapla-
cian L as described in Section 3.1.

Here, we are basically motivated by the assumption that
graph structure keeps being similar between neighboring im-
ages along temporal direction. Hence, it makes sense to use
a reference image to build a graph and then apply the derived
graph to process the current image.

We do not rely on the distance in feature domain since the
motion or trajectory is believed more correlated to keypoint
positions. The way to assign the graph weights in Eqn. 7 re-
flects the strength of correlation between the underlying key-
point motions. In addition, Euclidean distance involves only 3

Fig. 3. Keypoint trajectories of example video sequences

dimensional signals while feature spaces involve much higher
dimensions, e.g. 128 for a typical SIFT feature.

In the end, we treat the motion trajectories v to be en-
coded in Eqn. 6 as a graph signal x in Eqn. 2. Hence, we
could perform the steps from GFT transform, quantization,
de-quantization and inverse GFT as shown from Eqn. 2 to 5.

4. EXPERIMENTS AND DISCUSSIONS

4.1. Setting-up

In this section, we will verify the efficiency of the proposed
k-NN graph transform on coding keypoint trajectories. We
selected 11 sequences covering different motion complexity
levels. One sequence from Stanford MAR [11] has limited
motion. Two sequences from Hopkinl55 [16] were captured
by a hand-held camera with multiple moving object in ad-
dition to a camera motion. Three indoor sequences from
TUM [17] involves faster camera motion with moving peo-
ple. Two KITTI sequences [7] are from cameras mounted
on a moving car. In addition, three sequences from MPEG
CDVA dataset were selected.

First, the trajectories are extracted based on Wang’s
method in [6]. Then 300 trajectories evenly distributed over
each picture are selected for the coding experiments. The
GOP size is set to 15 pictures. Keypoint trajectories of the 4
example sequences are shown in Fig. 3.

An immediate previous image is selected to be used as ref-
erence to predict future trajectory locations, and the derived
motion vectors v as per Eqn. 6 are to be transform coded.
Since the coding of key images is not the scope of this work,
we will inspect the coding performance of the trajectory loca-
tions in the non-key images. The bitrate is collected in terms
of bits per picture, and the distortion is evaluated as the dis-
tance away from the original locations measured in pixels.

We have the horizontal and vertical component of v vec-
torized respectively in one image, as v, and v,. Then the
same GFT transform U? will be applied on them separately.
Since the GFT can be derived from the decoded anchor im-
age, no transmission overhead is required for GFT transform.

As a benchmark approach, we apply 1D DCT on v, and
vy. We do not enforce a 2D transform as the keypoints are
not in aligned with any regular 2D grid.

After GFT or DCT transformation, we have the coeffi-
cients quantized using a series of different steps, ¢ = 2, i €
[0, 1, ..,6]. The same quantization step is shared between the
coefficients from v, and v,,.
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4.2. Experimental Results and Discussions

RD curves of each sequence are plotted with different quan-
tization steps in Fig. 4 for DCT and Fig. 5 for GFT, respec-
tively. The curves appearing lower in the figures at a given bi-
trate (horizontal axes) indicates smaller distortion and is more
favorable. The comparison of the average results over all se-
quences is put together within Fig. 6 for easier verification.
Observations on the results are elaborated below.

When checking the RD curve shapes in Fig. 4 and Fig. 5,
we note that the variation of DCT method between sequences
is obviously larger than GFT. This demonstrates the content
adaptivity property of GFT, while DCT does not have such
a property as DCT has fixed transform basis. For GFT, as
the graph weights are assigned dynamically based on the key-
point locations in the reference image, the transform basis
could be tuned on the fly.

Except for one sequence from Stanford MAR dataset with
very simple motion, GFT significantly outperforms DCT in
general. Averagely speaking, given the location precision to
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Fig. 6. RD curves comparison, GFT vs DCT coding

be 2 pixels, 3 pixels and 4 pixels, the bitrate savings of GFT
relative to DCT are 26%, 30%, and 42%, which is a good cut
on the transmission or storage burden.

In addition to the relative savings, about 600 bits, 400 bits
and 280 bits are reported in Fig. 6 to code one image at differ-
ent trajectory precision of 2, 3 and 4 pixels, or equivalently 2
bits, 1.3 bits, 0.9 bits per keypoint location, considering 300
trajectories being coded. Depending on end usage of the key-
point trajectories, the bitrate can be adaptively chosen.

In our previous work in [13], which is a no transform
scheme with lossless coding, i.e. at integer pixel precision,
it would consume about 1400 bits per pictures if being aver-
aged over the same set of sequences. On contradictory, GFT
would cost around 960 bits per picture for precision less than
1 pixel, that is about 30% bitrate saving compared to the no
transform scheme in [13].

Last, as we have mentioned earlier, the spatial feature de-
scriptors along a trajectory are likely to change mildly. How-
ever, if it is not the case and they need to be coded, the pro-
posed GFT method could be applied on descriptor coding in
the same manner, which is subject to a future work.

5. CONCLUSION

This paper describes a novel graph method to do transform
coding for keypoint trajectories of videos for the purpose of
analysis. A k-NN graph was proposed to be built based on
the keypoint trajectory locations in a reference image, which
would lead to an efficient graph transform to code the tra-
jectory locations in a current image. This coding scheme is
able to operate at varying bitrates via selection of quantiza-
tion steps depending on different trajectory location precision.
Experimental results demonstrate that the proposed methods
significantly outperform a conventional DCT method or a no
transform coding scheme. The work will be extended to use
the graph transform to encode the feature descriptors along
the trajectories in the future.
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