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1 Introduction

Biometrics such as fingerprints, voice prints, irises, and faces are becoming in-
creasingly attractive tools for authentication and access control [1]. As replace-
ments for passwords, biometrics have a number of advantages. First biometrics
are inherently linked to the user and cannot be forgotten, lost, or given away. Sec-
ond, appropriately chosen biometrics have high entropy and are less susceptible to
brute force attacks than poorly chosen passwords. Finally, biometric authentication
requires very little user expertise and can be used for widespread deployment.

Despite their advantages, however, care must be taken in securely storing bio-
metrics. For example, Fig. 1 illustrates the biometric based encryption architec-
ture used by commercially available products such as laptops, mobile phones, and
portable hard drives. In such systems, an encryption key is derived from the user’s
biometric and used either to encrypt data stored on the device or to control access.
To allow decryption or authorized access, the original biometric is stored on the de-
vice. To decrypt the data or gain access, a second biometric reading is taken from
the user and compared with the biometric stored on the device. If the two biomet-
rics are close enough, then access is granted or the original biometric is used to
decrypt the data.

Figure 1: Typical (and insecure) biometric based encryption architecture an en-
cryption key is derived from the user’s biometric and used either to encrypt data
stored on the device or to control access. To allow decryption or authorized access,
the original biometric is stored on the device.

The major flaw in such systems is that the original biometric (which is the key)
is stored on the device. Specifically, if an attacker gains physical access to the de-
vice (e.g., by removing the hard drive from a laptop), then the attacker gains access
to the original biometric. For data encryption systems, the attacker can then use
the original biometric directly as the decryption key to compromise security. For
access control systems, the attacker can use the biometric in a variety of ways rang-
ing from creating fake biometrics matching the original, to modifying the output
of the sensor designed to measure the user’s biometric.



A potentially more serious security concern occurs when someone uses the
same biometric in many systems or when many user biometrics are stored on a
single system. Specifically, once an attacker acquires the original biometric, he
can use it to compromise the security of many different systems. This potential
for identify theft is much more serious for biometrics than passwords since if a
password is stolen, it can be easily changed, but if a biometric such as a fingerprint
is stolen it is difficult or impossible to change.

1.1 A Comparison To Passwords

Before delving into the secure biometrics problem, it is useful to consider a similar
problem that arises while storing passwords. Specifically, if a system authenticates
a user by requesting a password P , the system must have some way to verify
whether the correct password is provided. The most straightforward (and insecure)
way to do this would be to store P directly on the access control system. Of course,
if P is stored in the clear, then any attacker who gains access to the password
database completely compromises security.

Almost every password based system resolves this problem by storing the result
of passing P through a hash function H(·) instead of P and granting access only if
the password P ′ provided by a user satisfies H(P ) = H(P ′). By using a one-way
hash function that is difficult to invert, this approach prevents an attacker who gains
access to the password database containing H(P ) from obtaining P .

The key difference between a password and a biometric is that a password is
always the same every time it is used while biometrics suffer from measurement
noise and thus are different every time they are measured. Therefore storing the
hash of a biometric instead of the biometric itself generally fails.

1.2 Background

To the best of our knowledge, Davida, Frankel, and Matt first considered the use of
error correction coding as a solution to the secure biometrics problem [2]. Later, in
2002 Juels and Sudan [3] introduced the idea of a fuzzy vault to formalize the use
of error correcting codes for such applications. This spurred a variety of authors
to apply the fuzzy vault idea to biometrics. In particular, several constructions for
fingerprint biometrics were proposed [4–6] but all yielded high error rates. Also,
several researchers have explored the cryptographic aspects of this problem in more
depth [7–9]. On the information theory side, many authors have considered com-
mon randomness problems where different parties observe correlated random vari-
ables and attempt to agree on a shared secret key [10–13]. Our formulation and
proposed solution builds is inspired by both sets of work.
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1.3 Outline

Our main contributions in this paper are to formulate the secure biometrics problem
from an information theoretic perspective, to develop a practical construction based
on low density codes and belief propagation, and to report experimental results for
iris biometrics.

We begin by defining a model for the secure biometric storage problem in Sec-
tion 2. Section 3 describes our proposed solution from an information theoretic
perspective, while Section 4 discusses how this framework can be implemented in
practice and describes experimental results on iris biometrics. Finally, we close
with some concluding remarks in Section 5.

2 Problem Model

Essentially, a biometric measurement acts as a shared secret between the user and
an access control system. The secure biometric storage problem arises from the
fact that in practical scenarios neither the user nor the access control has direct
access to this shared secret.

Specifically, while the user essentially carries his biometric with him, he never
knows the true value of the biometric and can only obtain noisy measurements. In
particular, he can never recreate the exact measurement he provided to an access
control system, but can only obtain noisy versions of the original measurement.1

Second while the access control system is designed only to grant access to a
user possessing the shared secret, it cannot store this secret directly since doing so
compromises security if an attacker gains knowledge of the system. Specifically,
if an attacker gains knowledge of the access control system and the information
it stores, the attacker should be unable to impersonate a different user or to gain
access to encrypted data. Therefore the access control system must store an indirect
version of the shared secret.

2.1 Measurement Model:

We model the secure biometric storage problem as follows. We imagine that each
user has a “true biometric” b, which is a vector of length n drawn according to some
distribution Pb(b). Furthermore, we model the biometric for user i as statistically

1Obviously, the user could store the exact measurement he provided to an access control system
and carry this data around. But the main purpose of biometrics is precisely to avoid carrying or
remembering a shared secret and to automatically generate the secret from the biometric. Conse-
quently, our model assumes that the user does not carry or remember any information.
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independent of the biometric for user j. To account for the inherent noise in obtain-
ing a biometric measurement m, we model the measurement channel that maps a
true biometric into a measured biometric via a conditional distribution Pm|b(m|b).

2.2 Enrollment and Authentication

We divide the problem into two phases: the enrollment phase, and the authentica-
tion phase.

2.2.1 Enrollment Phase:

In the enrollment phase, a user is selected and the true biometric b is determined
by nature. Next, a measurement is made to obtain m. A key extraction function
x(·) then maps the initial measurement into a “biometric key” z = x(m), which
acts as the shared secret between the user and the access control system. Next, z

is mapped into the “secure biometric” S by an encoder f(·). The access control
system only stores S and does not directly store m or z.

2.2.2 Authentication Phase:

In the authentication phase, the same user requests access or decryption and pro-
vides another biometric measurement m

′. A decoder g(·, ·) combines the secure
biometric S with the measured biometric m

′ and either produces an estimate of the
shared secret ẑ or a special symbol ∅ indicating that authentication fails. Once the
decoder has produced the shared secret it can determine whether to grant access,
decrypt data encrypted with the shared secret, etc.

2.3 Performance Measures

2.3.1 Probability of Authentication Failure

We define Eauth as the event that the decoder fails to recover the shared secret for
a legitimate user:

Eauth
∆
=

{

z 6= g(m′, f(m))
}

. (1)

Ideally, Pr[Eauth] should be as small as possible. 2

2When the biometric is used to generate an encryption key Pr[Eauth] is the appropriate quantity.
But in access control applications, z may be compared to x(m′) to determine if access should be
granted. In such cases, further authentication errors are possible, but we do not consider these here
due to space constraints and plan to address this issue in future work.
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2.3.2 Probability of Security Failure

Most cryptographic attacks generally make many attempts to guess the desired
secret and so measuring the probability that a single attack succeeds is not partic-
ularly meaningful. Instead, security is usually assessed by measuring how many
attempts an attack algorithm must make to have a reasonable probability of suc-
cess. As a result, security failure is somewhat more complicated to define than
authentication failure.

Let L = At [·] be a list of 2tn guesses for S produced by an attack algorithm
At [·] that uses knowledge of x(·), f(·), g(·, ·), and S, but not m. We define Esec,t

as the event that the list contains the biometric used to produce S:

Esec,t
∆
= {z ∈ At [x(·), f(·), g(·, ·), S]} . (2)

We refer to a scheme with Pr[Esec,t] = ε as having n · t bits of security with
confidence 1− ε since with probability 1− ε an attacker must search a keyspace of
n · t bits to crack the system security.

2.4 Goals

The goal of the secure biometrics problem is to construct an encoder and decoder
to obtain the best combination of robustness (as measured by Eauth) and security
(as measured by Esec,t). In general, there will be a trade-off between these two.
For example, if Pr[Esec,40] = ε and Pr[Eauth] = 2−30 at one operating point, in-
creasing the security might yield another operating point at Pr[Esec,50] = ε and
Pr[Eauth] = 2−20. A similar trade-off between the probability of false alarm and
the probability of missed detection arises in many detection problems and is gen-
erally characterized by the receiver operating characteristic (ROC).

For various idealized models, as the block length n increases, it is possible to
show that Pr[Esec,t] undergoes a phase transition in t. Specifically, there will exist
a value of t below which Pr[Esec,t] goes to zero as n increases and above which this
probability goes to one as n increases. Consequently, we find it more meaningful to
measure security by focusing on the maximum value of t yielding a fixed Pr[Esec,t]
than by focusing on Pr[Esec,t] directly.

For authentication failure, the error exponent −(1/n) log Pr[Eauth] provides a
similar logarithmic performance measure. So for a fixed ε > 0, we define the
security-robustness region Rε as the set of pairs (t, γ) where t bits of security are
possible with an authentication failure probability of γ:

Rε = {(t, γ)|Pr[Esec,t] ≤ ε, γ ≤ −(1/n) log Pr[Eauth]} . (3)
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The goal of the secure biometrics problem is to maximize Rε. Specifically, as
illustrated in Fig. 2 we will consider one secure biometric system to be superior to
another secure biometrics system if the security-robustness region for the former is
strictly larger than the latter.
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Figure 2: Example security-robustness regions. The horizontal axis represents the
number of bits of security while the vertical axis represents robustness. The system
corresponding to the striped region has a larger security-robustness region and is
therefore superior to the system corresponding to the shaded region.

3 Secure Biometrics Via Information Theory

To illustrate the intuition for our proposed solution, we first describe a system and
estimate its performance using information theory and random codes. Later we
describe a practical implementation based on low density parity check codes.

3.1 Enrollment Phase

We model the key extraction function x(·) as a quantizer and denote the quantized
output as x̂ = x(m) where x̂ is a vector of length n with each component taking
values in a finite set X̂ . For example, in an iris system, x(·) could be a function
mapping the continuous image of an iris into a vector of bits.

For the encoder, we use a rate R random hash function. Specifically, we imag-
ine that f(·) is constructed by randomly assigning each possible quantized vector

MERL-TR2005-112 September 2005



x̂ ∈ X̂ n to an integer selected uniformly from {1, 2, . . . , 2nR}. The secure biomet-
ric is S = f(x(m)).

3.2 Authentication Phase

In the authentication phase, a user provides a biometric m
′ and claims to be user

i. The decoder g(S,m′) searches for a quantized vector ẑ ∈ X̂ n such that is ẑ is
jointly typical3 with m

′ and matches the hash (i.e., f(ẑ) = S). If a unique ẑ is
found, then the decoder outputs this result. Otherwise, an authentication failure is
declared and the decoder returns ∅.

3.3 Analysis

First, according to the Slepian-Wolf Theorem [14], the decoder will succeed with
probability approaching 1 as n increases provided that R > H(x̂|ẑ). Thus, Pr[Eauth]
approaches zero and for long block lengths, authentication failures become increas-
ingly unlikely. The theory of error exponents for channel coding [15] can be used
to derive sharper results such as the asymptotic form of log Pr[Eauth].

Next we consider the probability of successful attack, i.e., how well an attacker
can estimate z given the secure biometric S. According to the asymptotic equipar-
tition property [14], under fairly mild technical conditions it is possible to show
that conditioned on S = f(x̂), x̂ is approximately uniformly distributed over the
typical set of size 2H(x̂|S). We can compute H(x̂|S) via

H(x̂|S) = H(x̂, S)−H(S) = H(x̂)−H(S) = H(x̂)− nR (4)

and use this to estimate the security of a system provided H(x̂) is known.
We conclude this section with the following proposition which yields an inner

bound to the security-robustness region:

Proposition 1. Let b and m be sequences of random variables generated accord-
ing to the i.i.d. distribution

pm,b(m,b) =

n
∏

i=1

pm|b(mi|bi)pb(bi), (5)

then for any ε > 0 as n→∞ we can find the following inner bound to the security-
robustness region Rε by taking a union over all possible key extraction functions

3For readers less familiar with information theory, two vectors a and b are jointly typical with
respect to a distribution p(a, b), if the empirical entropies of a, b, and (a, b) are close to the true
entropies with respect to p(·, ·). See [14] for details.
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x(·) and rates R of (4) and the Slepian-Wolf coding error exponent [16]:

Rε ⊃ ∪x(·),R{t, γ|t ≤ H(x̂)−R, γ ≤ ESW,px̂,m(·,·)(R)} (6)

where ESW,p(·,·)(R) is the Slepian-Wolf coding coding error exponent [16] for a
source pair with distribution p(·, ·) at rate R.

4 A Secure Biometrics System Using Syndromes

In this section, we describe a prototype implementation of our secure biometrics
system for iris recognition and discuss experimental results on the CASIA [17]
database. Specifically, we replace the random hash function output of 3 with the
syndrome from an LDPC code.

4.1 Enrollment Phase

Our encoder f(·) consists of the following steps:

1. We start with an image of a user’s eye, detect the location of the iris, unwrap
it into a rectangular region, and use a bank of Gabor filters to extract a bit se-
quence, which we denote as m. These steps are performed using the matlab
implementation from [18].

2. Our key extraction procedure x(·) produces z from m by discarding the bits
at certain fixed positions that we determined to be unreliable based on our
training data. The resulting z = x(m) consists of the 1806 most reliable bits
from z.

3. We map the bit string z into the secure biometric S by computing the syn-
drome of z with respect to a low density parity check (LDPC) code. Specifi-
cally, we select a random parity check matrix H from a good low rate degree
distribution obtained via density evolution [19] and compute S = H · z.

4.2 Authentication Phase:

Our decoder g(·, ·) consists of the following steps:

1. As in the enrollment phase, we start with an image of a user’s eye, detect
the location of the iris, unwrap it into a rectangular region, and use a bank of
Gabor filters to extract a bit sequence, which we denote as m

′. These steps
are performed using the matlab implementation from [18].
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2. We again discard the least reliable bits as in step 1 of Section 4.1 and use the
resulting x(m′) as the input to a belief propagation decoder that attempts to
find a sequence ẑ satisfying H · ẑ = S.

3. If the belief propagation decoder succeeds, then the output of g(m′, S) is the
resulting ẑ. Otherwise, an authentication failure is declared and the output
of g(m′, S) is ∅.

4.3 Inter-bit Memory and New BP Rules

We found that the bit sequences extracted from the irises in our database contained
significant inter-bit correlation. Specifically, let pi,j be the probability of an iris bit
taking the value i followed by another bit with the value j. If the bits extracted from
an iris were independent and identically distributed, we would expect pi,j = 1/4
for all (i, j) ∈ {0, 1}2 . Instead we measured the following probabilities:

p0,0 = 0.318, p0,1 = 0.166, p1,0 = 0.166, p1,1 = 0.349. (7)

When we ignored this memory, we obtained unacceptably poor performance
and therefore we modified our belief propagation decoder to exploit memory. Specif-
ically, conventional belief propagation methods pass messages from variable nodes
to check nodes and back again using sum-product formulas (e.g., as described
in [20]). In contrast, we added “correlation nodes” between every pair of vari-
able nodes in the factor graph. Since the correlation nodes are essentially just a
different type of check node, adding them preserves the bipartite structure of the
factor graph.

We describe our changes to the traditional sum-product rules by defining new
message update equations for the messages to and from the new correlation nodes
(the message update equations for messages to and from the other nodes are un-
changed). In the notation of Kschischang et al., if µf→y(x) is the incoming mes-
sage for state x to variable node y from check f and µy→f (x) is the outgoing
message from variable node y to check or correlation node f , then the message
from a variable node y to a neighboring check or correlation node f is

µy→f (x) =
∏

c∈N (y)\y

µc→y(x) (8)

where N (a)\b is the set of nodes that are neighbors of a excluding node b. The
only change from [20] is that y may now refer to correlation nodes as well as
traditional check nodes. The message from a check node f to a variable node y
is exactly the same as the usual check to variable rule (see [20] for details). The
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main change is the rule for an outgoing message from a correlation node f to the
variable node y on its left

µ
(L)
y←f (0) = p0,0·µf→y(0)+p0,1·µf→y(1) and µ

(L)
y←f (1) = p1,0·µf→y(0)+p1,1·µf→y(1)

(9)
and the message from a correlation node f to the variable node y on its right

µ
(R)
y←f (0) = p0,0·µf→y(0)+p1,0·µf→y(1) and µ

(R)
y←f (1) = p0,1·µf→y(0)+p1,1·µf→y(1).

(10)

4.4 Experimental Results

To test our prototype system, we used the CASIA iris database [17]. The iris
segmentation algorithm used by our system was only able to correctly detect the
iris in 624 out of 756 images [18, Chapter 2.4]. Since our goal was to focus on the
secure biometrics problem not on iris segmentation, we worked only with the 624
iris that were segmented successfully. Furthermore, we separated these 624 into
312 training images (e.g., in order to measure parameters such as pi,j) and 312 test
images (on which we report results).

Fig. 3 reports our performance results on the 312 image test set from the CA-
SIA iris database. The horizontal axis represents security (the t parameter in Sec-
tion 2.3.2) while the vertical axis represents − log2 Pr[Eauth] where Pr[Eauth] is
the probability of authentication failure for a legitimate user. Better systems cor-
respond to points in the upper right, but as the figure shows, there is a trade-off
between security and robustness. Specifically, if a rate R LDPC code is used in
step 3 of Section 4.1, then S contains nR bits. Under the idealized model where
the iris data consists of i.i.d. Bernoulli(1/2) bits, our approach yields approximately
1806·R bits of security with confidence approaching 1. Decreasing R yields higher
security, but lower robustness so the security-robustness region can be estimated by
varying this parameter.

Note that if the biometric is stored in the clear then we obtain a probability
of authentication failure of 0.0012 (i.e., the leftmost point in the graph).4 Thus,
we see that with essentially no change in the probability of authentication failure
relative to an insecure scheme, we achieve almost 50 bits of security.

4When a biometric key is stored in the clear there can be no error in recovering the key for
decryption. Instead, the leftmost point in Fig. 3 represents the probability of false rejection for an
access control system that grants access if the measured biometric is close enough to the biometric
stored in the clear.
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Figure 3: Performance results on 312 images in our test set from the CASIA iris
database. The horizontal axis represents security (the t parameter in Section 2.3.2)
while the vertical axis represents − log2 Pr[Eauth] where Pr[Eauth] is the probabil-
ity of authentication failure for a legitimate user. The solid line shows performance
for our system, while the leftmost point is authentication performance without se-
curity.

4.4.1 Information Theoretic vs. Computational Security

We note that while we believe our approach provides a secure method of storing
biometrics, the true level of security is somewhat difficult to evaluate. Specifically,
the original length of the bit sequence extracted from an iris in our system is 1806
and the length of the syndrome produced by our encoder is 1806 − t where t is a
point on the horizontal axis of Fig. 3. If the original biometrics were independent
and identically distributed sequences of uniformly random bits, then the proba-
bility of guessing the true biometric from the syndrome would be about 2−t (i.e.,
information theoretic security of t bits).

As we point out in Section 4.3, however, there is significant inter-bit memory
in iris biometrics. In particular, according to the statistics for pi,j that we measured,
the entropy of an 1806 bit measurement is only about 90% of 1806. Consequently,
if our syndrome was a truly random hash of the input biometric, it would contain
1806 − t bits of information about the biometric. Since 1806 − t > 90% for all
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reasonable values of Pr[Eauth], this suggests that an attacker with unbounded com-
putational resources might be able to determine the true syndrome more quickly
than by randomly searching a key space of size 2t.

We are not aware of any computationally feasible methods of improving upon
random guessing. The most obvious method to attempt would be for the attacker
to guess a random bit string for the measured biometric and attempt belief prop-
agation decoding. Such a strategy would probably require fewer attempts than a
random guessing strategy, but the time required for belief propagation decoding
might outweigh such an advantage.

In practice, we do not believe this issue is a serious impediment in real systems
since similar security issues are present for virtually all other encryption systems.
For example, it is well known that the widely used RSA encryption algorithm can
be broken more quickly than by exhaustively searching the key space. Therefore,
our main purpose in raising this issue is to spur further analysis for more accurate
security estimates.

5 Concluding Remarks

In this paper, we discussed a model for the secure biometrics problem, described
an information theoretic solution based on the Slepian-Wolf theorem, proposed a
practical implementation using syndrome codes, and discussed experimental re-
sults of a prototype on iris biometrics. In particular, for the CASIA database, our
proposed solution achieves about 50 bits of security at essentially the same authen-
tication error rates as an insecure system. Higher levels of security can be achieved
if larger authentication error rates are allowed. To our knowledge, these results
represent the first experimental results for any method of securing iris data and the
first method of securing any biometric data that can provide security at the roughly
same authentication error rate as an insecure system.
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